2. 浙江大学医学院附属第二医院心血管病科, 杭州 310009
冠状动脉粥样硬化性心脏病(冠心病)是一种严重影响人类生命和健康的慢性病,其患病率和死亡率逐年上升[1]。经皮冠状动脉介入(percutaneous coronary intervention, PCI)是治疗冠心病患者的主要方法之一,能有效改善患者的冠状动脉血流,缓解患者症状,提高生活质量[2]。然而,支架内再狭窄(in-stent restenosis, ISR)一直是PCI术后无法忽视的重要并发症之一[3]。近年来,随着药物洗脱支架(drug eluting stent, DES)的广泛应用,ISR的发生风险已明显降低[4]。尽管如此,ISR的发生率仍在3%~10%之间,严重影响PCI的远期疗效[5-7]。目前对于PCI术后ISR的管理与治疗仍然是一个极具挑战性的问题,且其确切的形成机制尚不完全清楚[8]。因此,提早识别和控制相关的危险因素可能是减少ISR发生和改善患者预后的重要方法。
炎症反应是ISR发生的重要促发因素。在冠脉支架置入早期阶段,支架相关机械性损伤可导致内皮细胞破裂和功能障碍或斑块破裂等,从而引发炎症反应和血小板激活[9-10]。而晚期阶段可表现为血管平滑肌细胞的增殖和迁移以及细胞外基质的生成,导致新生内膜增生和动脉粥样硬化(atherosclerosis, AS)。炎症反应参与内膜增生和AS的形成,从而促进ISR的发展[11]。近年来,针对炎症标志物在预测ISR方面的研究已取得了一定的进展,为ISR的早期识别和提早干预提供了新的视角。本文将对几种重要的冠状动脉ISR的炎症预测标志物进行综述。
1 C反应蛋白C反应蛋白(C-reactive protein, CRP)是一种非特异性急性反应蛋白,在白细胞介素(interleukin,IL)-6、IL-1和肿瘤坏死因子(tumor necrosis factor, TNF)等多种炎症细胞因子的刺激下由肝脏合成[12]。CRP已被证实不仅能够反映动脉粥样硬化病变处的炎症情况,而且还广泛参与冠心病与ISR的发生与发展。既往研究测定了78例单支病变的冠心病患者PCI术前的基础CRP水平,结果表明高基础CRP水平的患者更易发生ISR[13]。另有一项研究通过分析基础CRP水平与DES置入术后4个月时冠脉内超声测量的新生内膜增生体积之间的关系,发现基础CRP水平与支架内新生内膜增生体积独立相关[14]。近期的一项Meta分析同样发现了较高的基线CRP水平与ISR的发生呈正相关[15]。此外,国内也有学者证实了二者之间的密切关系[16]。
CRP可直接与低密度脂蛋白胆固醇结合,并存储于脂质斑块中[17]。其促进支架内再狭窄可能与以下因素有关:一方面,CRP可以促进单核细胞的粘附和向血管壁的迁移,从而启动AS的形成[18];另一方面,它还可以催化M1型巨噬细胞的极化,导致巨噬细胞的浸润和AS的进展[19]。此外,CRP的一种亚型——单体CRP,在受到血小板激活的刺激后,其自身具有促血栓形成特性[20]。
直接使用CRP作为ISR的炎症预测指标可能存在一定的障碍,因为现有的检测方法常无法直接检测到血清中低水平的CRP。因此,许多研究开始致力于分析高敏CRP(high-sensitive CRP, hs-CRP)在ISR中的临床预测价值[21-23]。
白蛋白通常在炎症性疾病中表现为水平下降,CRP/白蛋白比值水平升高已被证实与ISR之间存在强烈关联,其可作为ISR的独立预测因素[24]。
2 免疫细胞相关预测标志物 2.1 中性粒细胞和淋巴细胞比值(neutrophil to lymphocyte ratio, NLR)较高的中性粒细胞水平与冠心病高危人群及其不良预后相关[25-26]。研究表明,在AS的各个阶段,均存在中性粒细胞的持续募集[27]。而低淋巴细胞计数也被认为与冠心病患者预后较差有关[28],有研究认为较低的淋巴细胞计数可能代表了与皮质醇释放有关的生理应激,并反映了调节不良的免疫反应[29]。目前,NLR已被广泛应用于评价冠心病及ISR的炎症情况[30]。有研究评估了NLR与冠状动脉慢性完全闭塞病变(chronic coronary total occlusion, CTO)及PCI术后临床预后的关系。该研究共纳入CTO患者与非CTO患者各160例,结果发现与非CTO组相比,CTO组患者的白细胞计数、中性粒细胞计数和NLR均显著升高。而在高NLR组中,严重夹层、冠状动脉慢血流现象、ISR和主要不良心血管事件(major adverse cardiovascular events, MACE)的发生率也明显升高,多因素分析提示NLR与较高的ISR和MACE风险独立正相关[31]。之后该研究再次连续入选416例因CTO病变成功行PCI治疗并接受血管造影随访的患者,以评价不同炎症标志物对ISR的预测价值,结果同样证实了NLR可作为ISR的独立预测因子[32]。此外,也有研究报道了NLR在2型糖尿病患者DES置入术后发生ISR的预测价值[33]。
2.2 血小板相关预测标志物支架置入过程所致的机械性损伤,可引起内皮下组织因子和胶原蛋白的释放,导致血小板活化、吸附及聚集。血小板活化过程中所释放的血小板源性生长因子可进一步诱导平滑肌细胞增殖和迁移,从而促进ISR的发生与发展[34]。CD45+血小板计数被认为可用于预测冠心病合并2型糖尿病患者DES置入后ISR的发生[35]。与NLR相似,血小板与淋巴细胞比值(platelet to lymphocyte ratio, PLR)是一项更敏感的炎症预测指标。有研究发现ISR组患者的术前PLR及CRP水平均明显高于非ISR组,并进一步分析得出了术前高PLR水平是稳定型和不稳定型心绞痛患者金属裸支架(bare-metal stent, BMS)置入后ISR的独立预测因素的结论[36]。同样地,Li等[32]也证实了高PLR水平可作为CTO患者DES置入术后ISR的重要炎症预测标志物。
血小板分布宽度(platelet distribution width, PDW)是血小板活化的一种特异标志物。PDW增加表明血小板之间尺寸差异增大。多项研究已表明PDW可作为冠心病患者DES置入术后ISR的重要预测指标[37-39]。此外,也有研究报道了术前平均血小板体积(mean platelet volume, MPV)对稳定型心绞痛患者支架置入术后ISR的影响,发现术前MPV水平与ISR的发展相关[40]。Yang等[41]也发现了在接受经皮腔内冠状动脉血管成形术的患者中,ISR组人群的MPV高于非ISR组,且早期再狭窄与较高的术前MPV值相关。
2.3 其他免疫细胞相关预测标志物单核细胞是促炎因子和促氧化因子的主要来源。在血液循环中,单核细胞可分化为巨噬细胞和泡沫细胞。而巨噬细胞又可通过清道夫受体和氧化的低密度脂蛋白-C产生泡沫细胞,释放更多的炎症因子和促氧化因子至支架部位,从而与血小板和平滑肌细胞相互作用,最终导致炎症和ISR。有研究表明,循环中单核细胞水平与支架内新生内膜体积相关[42]。Li等[43]报道了术后3个月升高的单核细胞水平可能是DES置入后ISR的早期信号。而进一步的研究证实了单核细胞可作为冠心病患者DES置入后ISR的独立预测因子[44]。
单核细胞与高密度脂蛋白的组合(monocytes to high-density lipoprotein cholesterol ratio, MHR),通过将危险因素与保护因素相结合,形成了一种新型炎症标志物,引起了学者们的关注[45]。在非ST段抬高型急性冠脉综合征患者中,有研究指出升高的MHR与血小板计数可作为DES置入术后ISR的重要炎症预测指标[46]。MHR也被证实在早发冠心病患者中对于DES置入术后ISR的发生具有良好的预测价值[47]。此外,也有研究报道了在BMS置入术后的冠心病患者中,淋巴细胞与单核细胞的比值与ISR的发生呈负相关[48]。
近年来,红细胞分布宽度(red blood cell distribution width, RDW)也被认为是慢性炎症的标志,有学者认为其机制可能是炎症因子抑制红细胞成熟,致使未成熟的红细胞进入外周血中[49]。有研究表明,较高的RDW可能与不稳定型心绞痛患者DES置入术后ISR的发生相关[50]。一项双中心回顾性研究也指出,较高的RDW水平可能会增加老年急性冠脉综合征患者置入DES后3年内发生ISR的风险[51]。也有研究表示术前高RDW可作为DES置入后ISR的独立预测因素[52]。
3 其他IL作为一类在免疫调节和炎症反应方面具有重要作用的细胞因子,在AS的形成及ISR的发展中扮演重要角色[53]。研究表明,在稳定型心绞痛患者BMS及DES置入后,冠状静脉窦中血清IL-1β和IL-6水平显著升高,这可能与支架置入术后斑块破裂或内皮损伤有关[54]。此外,也有研究发现相较于非ISR,发生ISR的冠心病患者血清IL-6、IL-8水平更高,并推测其升高可能与微管相关蛋白轻链1A/1B 3-Ⅱ介导的自噬相关[55]。Gao等[56]报告同样显示了术后1 d患者血清IL-6水平升高是BMS置入术后ISR的独立危险因素,并进一步指出携带IL-6-572G等位基因的患者可能通过提高血清IL-6水平而增加个体的ISR易感性。血清IL-33水平升高也被证实与较高的ISR发生风险相关[57]。与之相反,具有抗AS作用的IL-10被发现与支架置入术后的内膜增生呈负相关关系[58]。
基质金属蛋白酶(matrix metalloproteinase, MMP)是一组锌依赖的蛋白水解酶,对细胞外基质具有特异性的蛋白水解活性。MMP-9作为MMP家族中研究最为广泛的成员,已被多项研究证实与斑块不稳定性之间存在密切关系[59]。有研究显示,在接受BMS置入的冠心病患者中,术后3个月时MMP-9的升高与ISR的发生独立相关,且ISR组中ST段抬高型心肌梗死患者在3个月时的MMP-9升高幅度更大[60]。另一项研究也发现MMP-9和MMP-2活性升高与DES置入后ISR率显著相关[61]。而Pleva等[62]研究则进一步指出MMP-9和MMP-3水平升高可作为支架置入术后ISR的预测因素。
4 结语炎症反应是导致ISR病理生理变化的重要机制。多数炎症预测标志物,如CRP、免疫细胞相关预测标志物及白介素等,在临床实际应用过程中具有经济、安全、便捷等优势。这些标志物可在术前及术后多个时间段进行重复检查,从而能够实现动态评估PCI术后ISR的发生风险。然而,这些炎症预测标志物在真正应用于临床前仍存在一些局限性及风险。首先,上述多数研究属于回顾性研究,样本量小,样本来源单一,可能会导致选择偏倚和结果的普适性受限,因此,有必要进一步开展大规模、多中心、前瞻性的队列研究来验证结果的可靠性。其次,各种炎症标志物与ISR之间的关系可能涉及多种生物学机制,对结果的解读仍需谨慎,进一步的研究应更全面地纳入多种潜在的混杂因素。最后,多数研究仅在围手术期间测定炎症预测标志物水平,未考虑这些生物标志物在随访期间的动态变化。长期跟踪和动态监测可能能够更为准确地反映其对ISR发展的影响,这或许是后续临床研究与实践的重点。
利益冲突 所有作者声明无利益冲突
本文思维导图请登陆中华急诊网(www.cem.org.cn)浏览(Html格式全文)
[1] | Vaduganathan M, Mensah GA, Turco JV, et al. The global burden of CardiovascularDiseases and risk: a compass for future health[J]. J Am Coll Cardiol, 2022, 80(25): 2361-2371. DOI:10.1016/j.jacc.2022.11.005 |
[2] | 沈迎, 王伟民, 张奇, 等. 经皮冠状动脉介入治疗2022年度临床研究进展[J]. 中国介入心脏病学杂志, 2023, 31(1): 25-32. DOI:10.3969/j.issn.1004-8812.2023.01.005 |
[3] | 郝伟, 赵晨, 胡思宁, 等. 冠状动脉药物洗脱支架内再狭窄的最新研究进展[J]. 中国介入心脏病学杂志, 2023, 31(1): 63-68. DOI:10.3969/j.issn.1004-8812.2023.01.010 |
[4] | Weiss AJ, Lorente-Ros M, Correa A, et al. Recent advances in stent technology: do they reduce cardiovascular events?[J]. Curr Atheroscler Rep, 2022, 24(9): 731-744. DOI:10.1007/s11883-022-01049-z |
[5] | Shlofmitz E, Iantorno M, Waksman R. Restenosis of drug-eluting stents: a new classification system based on disease mechanism to guide treatment and state-of-the-art review[J]. Circ Cardiovasc Interv, 2019, 12(8): e007023. DOI:10.1161/CIRCINTERVENTIONS.118.007023 |
[6] | Moussa ID, Mohananey D, Saucedo J, et al. Trends and outcomes of restenosis AfterCoronary stent implantation in the United states[J]. J Am Coll Cardiol, 2020, 76(13): 1521-1531. DOI:10.1016/j.jacc.2020.08.002 |
[7] | Alfonso F, Kastrati A. Clinical burden and implications of coronary interventions for in-stent restenosis[J]. EuroIntervention, 2021, 17(5): e355-e357. DOI:10.4244/EIJV17I5A60 |
[8] | Alfonso F, Coughlan JJ, Giacoppo D, et al. Management of in-stent restenosis[J]. EuroIntervention, 2022, 18(2): e103-e123. DOI:10.4244/EIJ-D-21-01034 |
[9] | Jukema JW, Verschuren JJ, Ahmed TA, et al. Restenosis after PCI. Part 1: pathophysiology and risk factors[J]. Nat Rev Cardiol, 2011, 9(1): 53-62. DOI:10.1038/nrcardio.2011.132 |
[10] | Scott NA. Restenosis following implantation of bare metal coronary stents: pathophysiology and pathways involved in the vascular response to injury[J]. Adv Drug Deliv Rev, 2006, 58(3): 358-376. DOI:10.1016/j.addr.2006.01.015 |
[11] | Pelliccia F, Zimarino M, Niccoli G, et al. In-stent restenosis after percutaneous coronary intervention: emerging knowledge on biological pathways[J]. Eur Heart J Open, 2023, 3(5): oead083. DOI:10.1093/ehjopen/oead083 |
[12] | Rizo-Téllez SA, Sekheri M, Filep JG. C-reactive protein: a target for therapy to reduce inflammation[J]. Front Immunol, 2023, 14: 1237729. DOI:10.3389/fimmu.2023.1237729 |
[13] | 冯六六, 钱菊英, 周明成, 等. 血清C反应蛋白对冠状动脉支架置入术后心血管事件和再狭窄的预测价值[J]. 中华心血管病杂志, 2003, 31(7): 514-516. DOI:10.3760/j:issn:0253-3758.2003.07.010 |
[14] | Lasave LI, Abizaid AA, Paiva e Maia J, et al. Relationship between plasma C-reactive protein level and neointimal hyperplasia volume in patients with zotarolimus-eluting stents[J]. Rev Esp Cardiol, 2007, 60(9): 923-931. DOI:10.1157/13109645 |
[15] | Rai H, Reddi R, MacDonnell C, et al. Association of c-reactive protein levels with coronary in-stent restenosis: a scoping review and meta-analysis[J]. J Am Coll Cardiol, 2023, 81(8): 899. DOI:10.1016/s0735-1097(23)01343-8 |
[16] | 王成钢, 王春梅, 阙斌, 等. C反应蛋白水平对冠状动脉支架内再狭窄的预测价值[J]. 中华老年心脑血管病杂志, 2020, 22(2): 149-152. DOI:10.3969/j.issn.1009-0126.2020.02.010 |
[17] | Libby P. Inflammation in atherosclerosis[J]. Nature, 2002, 420: 868-874. DOI:10.1038/nature01323 |
[18] | Zhang YX, Cliff WJ, Schoefl GI, et al. Coronary C-reactive protein distribution: its relation to development of atherosclerosis[J]. Atherosclerosis, 1999, 145(2): 375-379. DOI:10.1016/s0021-9150(99)00105-7 |
[19] | U S Preventive Services Task Force. Using nontraditional risk factors in coronary heart disease risk assessment: U.S. Preventive Services Task Force recommendation statement[J]. Ann Intern Med, 2009, 151(7): 474-482. DOI:10.7326/0003-4819-151-7-200910060-00008 |
[20] | Eisenhardt SU, Habersberger J, Murphy A, et al. Dissociation of pentameric to monomeric C-reactive protein on activated platelets localizes inflammation to atherosclerotic plaques[J]. Circ Res, 2009, 105(2): 128-137. DOI:10.1161/CIRCRESAHA.108.190611 |
[21] | Feng Q, Zhao Y, Wang HY, et al. A predictive model involving serum uric acid, C-reactive protein, diabetes, hypercholesteremia, multiple lesions for restenosis risk in everolimus-eluting stent-treated coronary heart disease patients[J]. Front Cardiovasc Med, 2022, 9: 857922. DOI:10.3389/fcvm.2022.857922 |
[22] | Ismail Hussein M, Abaza Ahmed O, Nasr Gamela M, et al. High sensitivity C-reactive protein in patients with coronary artery in-stent restenosis: a case-control study[J]. Open Cardiovasc Med J, 2021, 15: 29-37. DOI:10.2174/1874192402115010029 |
[23] | Yi M, Wu L, Ke X. Prognostic value of high-sensitivity C-reactive protein in In-stent restenosis: a meta-analysis of clinical trials[J]. J Cardiovasc Dev Dis, 2022, 9(8): 247. DOI:10.3390/jcdd9080247 |
[24] | Aksu U, Gulcu O, Aksakal E, et al. The association between CRP/Albumin ratio and in-stent restenosis development in patients with ST-segment elevation myocardial infarction[J]. J Clin Lab Anal, 2019, 33(4): e22848. DOI:10.1002/jcla.22848 |
[25] | Zhang N, Aiyasiding X, Li WJ, et al. Neutrophil degranulation and myocardial infarction[J]. Cell Commun Signal, 2022, 20(1): 50. DOI:10.1186/s12964-022-00824-4 |
[26] | Shirakawa K, Sano M. Neutrophils and neutrophil extracellular traps in cardiovascular disease: an overview and potential therapeutic approaches[J]. Biomedicines, 2022, 10(8): 1850. DOI:10.3390/biomedicines10081850 |
[27] | Shah N, Parikh V, Patel N, et al. Neutrophil lymphocyte ratio significantly improves the Framingham risk score in prediction of coronary heart disease mortality: insights from the National Health and Nutrition Examination Survey-III[J]. Int J Cardiol, 2014, 171(3): 390-397. DOI:10.1016/j.ijcard.2013.12.019 |
[28] | Horne BD, Anderson JL, John JM, et al. Which white blood cell subtypes predict increased cardiovascular risk?[J]. J Am Coll Cardiol, 2005, 45(10): 1638-1643. DOI:10.1016/j.jacc.2005.02.054 |
[29] | Azab B, Chainani V, Shah N, et al. Neutrophil-lymphocyte ratio as a predictor of major adverse cardiac events among diabetic population: a 4-year follow-up study[J]. Angiology, 2013, 64(6): 456-465. DOI:10.1177/0003319712455216 |
[30] | Agarwal R, Aurora RG, Siswanto BB, et al. The prognostic value of neutrophil-to-lymphocyte ratio across all stages of coronary artery disease[J]. Coron Artery Dis, 2022, 33(2): 137-143. DOI:10.1097/MCA.0000000000001040 |
[31] | Li CG, Zhang F, Shen Y, et al. Impact of neutrophil to lymphocyte ratio (NLR) index and its periprocedural change (NLRΔ) for percutaneous coronary intervention in patients with chronic total occlusion[J]. Angiology, 2017, 68(7): 640-646. DOI:10.1177/0003319716649112 |
[32] | Li CG, Shen Y, Xu RD, et al. Evaluation of preprocedural laboratory parameters as predictors of drug-eluting stent restenosis in coronary chronic total occlusion lesions[J]. Angiology, 2019, 70(3): 272-278. DOI:10.1177/0003319717752245 |
[33] | Wang ZC, Zhang JN, Zhou Z, et al. Predictive value of neutrophil-to-lymphocyte ratio on drug eluting stent restenosis in patients with type 2 diabetes mellitus[J]. Chin Med J, 2020, 133(19): 2373-2374. DOI:10.1097/CM9.0000000000001045 |
[34] | Dinc R. A review of the current state in neointimal hyperplasia development following endovascular intervention and minor emphasis on new horizons in immunotherapy[J]. Transl Clin Pharmacol, 2023, 31(4): 191-201. DOI:10.12793/tcp.2023.31.e18 |
[35] | Gabbasov Z, Kozlov S, Melnikov I, et al. Novel biomarkers for coronary restenosis occurrence after drug-eluting stent implantation in patients with diabetes having stable coronary artery disease[J]. Clin Appl Thromb Hemost, 2018, 24(8): 1308-1314. DOI:10.1177/1076029618771752 |
[36] | Y?lmaz S, Sen F, ünal S, et al. Usefulness of the platelet-to-lymphocyte ratio in predicting bare-metal stent restenosis[J]. Scand Cardiovasc J, 2015, 49(1): 39-44. DOI:10.3109/14017431.2014.989537 |
[37] | Chai DY, Yang X, Wang AC, et al. Usefulness of platelet distribution width and fibrinogen in predicting In-stent restenosis with stable angina and type 2 patients with diabetes mellitus[J]. Front Cardiovasc Med, 2022, 9: 710804. DOI:10.3389/fcvm.2022.710804 |
[38] | Hu CP, Du Y, Zhu Y, et al. Platelet distribution width on admission predicts In-stent restenosis in patients with coronary artery disease and type 2 diabetes mellitus treated with percutaneous coronary intervention[J]. Chin Med J, 2018, 131(7): 757-763. DOI:10.4103/0366-6999.228247 |
[39] | Gai MT, Zhu B, Chen XC, et al. A prediction model based on platelet parameters, lipid levels, and angiographic characteristics to predict in-stent restenosis in coronary artery disease patients implanted with drug-eluting stents[J]. Lipids Health Dis, 2021, 20(1): 118. DOI:10.1186/s12944-021-01553-2 |
[40] | Norgaz T, Hobikoglu G, Aksu H, et al. The relationship between preprocedural platelet size and subsequent in-stent restenosis[J]. Acta Cardiol, 2004, 59(4): 391-395. DOI:10.2143/AC.59.4.2005204 |
[41] | Yang A, Pizzulli L, Lüderitz B. Mean platelet volume as marker of restenosis after percutaneous transluminal coronary angioplasty in patients with stable and unstable angina pectoris[J]. Thromb Res, 2006, 117(4): 371-377. DOI:10.1016/j.thromres.2005.04.004 |
[42] | Fukuda D, Shimada K, Tanaka A, et al. Circulating monocytes and in-stent neointima after coronary stent implantation[J]. J Am Coll Cardiol, 2004, 43(1): 18-23. DOI:10.1016/j.jacc.2003.08.026 |
[43] | Li SM, Qiu H, Lin ZR, et al. The early predictive value of circulating monocytes and eosinophils in coronary DES restenosis[J]. Front Cardiovasc Med, 2022, 9: 764622. DOI:10.3389/fcvm.2022.764622 |
[44] | Luo YH, Tan N, Zhao JB, et al. A nomogram for predicting In-stent restenosis risk in patients undergoing percutaneous coronary intervention: a population-based analysis[J]. Int J Gen Med, 2022, 15: 2451-2461. DOI:10.2147/IJGM.S357250 |
[45] | Liu HT, Jiang ZH, Yang ZB, et al. Monocyte to high-density lipoprotein ratio predict long-term clinical outcomes in patients with coronary heart disease: a meta-analysis of 9 studies[J]. Medicine, 2022, 101(33): e30109. DOI:10.1097/MD.0000000000030109 |
[46] | Nan J, Meng S, Hu HY, et al. The predictive value of monocyte count to high-density lipoprotein cholesterol ratio in restenosis after drug-eluting stent implantation[J]. Int J Gen Med, 2020, 13: 1255-1263. DOI:10.2147/IJGM.S275202 |
[47] | Chen BW, Liu JJ, Xing JH, et al. Analysis of the correlation between the ratio of monocytes to high-density lipoprotein cholesterol and in-stent restenosis in patients with premature coronary heart disease[J]. Clin Appl Thromb Hemost, 2022, 28: 10760296221079334. DOI:10.1177/10760296221079334 |
[48] | Murat SN, Yarlioglues M, Celik IE, et al. The relationship between lymphocyte-to-monocyte ratio and bare-metal stent In-stent restenosis in patients with stable coronary artery disease[J]. Clin Appl Thromb Hemost, 2017, 23(3): 235-240. DOI:10.1177/1076029615627340 |
[49] | Tonelli M, Sacks F, Arnold M, et al. Relation between red blood cell distribution width and cardiovascular event rate in people with coronary disease[J]. Circulation, 2008, 117(2): 163-168. DOI:10.1161/CIRCULATIONAHA.107.727545 |
[50] | Geng N, Su GS, Wang SJ, et al. High red blood cell distribution width is closely associated with in-stent restenosis in patients with unstable angina pectoris[J]. BMC Cardiovasc Disord, 2019, 19(1): 175. DOI:10.1186/s12872-019-1159-3 |
[51] | Zhou J, Chai DY, Dai YX, et al. Predictive value analysis of in-stent restenosis within three years in older acute coronary syndrome patients: a two-center retrospective study[J]. Clin Appl Thromb Hemost, 2022, 28: 10760296221107888. DOI:10.1177/10760296221107888 |
[52] | Qian H, Luo ZH, Xiao CM, et al. Red cell distribution width in coronary heart disease: prediction of restenosis and its relationship with inflammatory markers and lipids[J]. Postgrad Med J, 2018, 94(1115): 489-494. DOI:10.1136/postgradmedj-2018-135806 |
[53] | Zamani P, Schwartz GG, Olsson AG, et al. Inflammatory biomarkers, death, and recurrent nonfatal coronary events after an acute coronary syndrome in the MIRACL study[J]. J Am Heart Assoc, 2013, 2(1): e003103. DOI:10.1161/JAHA.112.003103 |
[54] | Sardella G, Mariani P, D'Alessandro M, et al. Early elevation of interleukin-1β and interleukin-6 levels after bare or drug-eluting stent implantation in patients with stable angina[J]. Thromb Res, 2006, 117(6): 659-664. DOI:10.1016/j.thromres.2005.06.002 |
[55] | Yu CB, Tang Q, Xie GY, et al. The expression and role of LC3II and inflammatory cytokines in in-stent restenosis after percutaneous coronary intervention in patients with coronary heart disease[J]. Int J Clin Exp Med, 2019, 12(7): 8753-8758. |
[56] | Gao J, Liu Y, Cui RZ, et al. Relationship of interleukin-6-572C/G promoter polymorphism and serum levels to post-percutaneous coronary intervention restenosis[J]. Chin Med J, 2013, 126(6): 1019-1025. |
[57] | Demyanets S, Tentzeris I, Jarai R, et al. An increase of interleukin-33 serum levels after coronary stent implantation is associated with coronary in-stent restenosis[J]. Cytokine, 2014, 67(2): 65-70. DOI:10.1016/j.cyto.2014.02.014 |
[58] | Feldman LJ, Aguirre L, Ziol M, et al. Interleukin-10 inhibits intimal hyperplasia after angioplasty or stent implantation in hypercholesterolemic rabbits[J]. Circulation, 2000, 101(8): 908-916. DOI:10.1161/01.cir.101.8.908 |
[59] | Li TW, Li XJ, Feng YC, et al. The role of matrix metalloproteinase-9 in atherosclerotic plaque instability[J]. Mediators Inflamm, 2020, 2020: 3872367. DOI:10.1155/2020/3872367 |
[60] | Tarr GP, Williams MJ, Wilkins GT, et al. Intra-individual changes of active matrix metalloproteinase-9 are associated with clinical in-stent restenosis of bare metal stents[J]. Cardiology, 2013, 124(1): 28-35. DOI:10.1159/000345591 |
[61] | Katsaros KM, Kastl SP, Zorn G, et al. Increased restenosis rate after implantation of drug-eluting stents in patients with elevated serum activity of matrix metalloproteinase-2 and-9[J]. JACC Cardiovasc Interv, 2010, 3(1): 90-97. DOI:10.1016/j.jcin.2009.10.023 |
[62] | Pleva L, Kusnierova P, Plevova P, et al. Increased levels of MMP-3, MMP-9 and MPO represent predictors of in-stent restenosis, while increased levels of ADMA, LCAT, ApoE and ApoD predict bare metal stent patency[J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2015, 159(4): 586-594. DOI:10.5507/bp.2015.037 |