重症急性胰腺炎(severe acute pancreatitis,SAP)是常见的急危重症疾病之一,其特点是持续的多器官功能障碍综合征、全身炎症反应综合征[1-2]。进一步可导致胰腺及其周围组织坏死,形成急性坏死性胰腺炎(acute necrotizing pancreatitis,ANP)[3]。ANP通常在疾病发作后第2至第3周出现,30%~40%的患者会继发感染,即感染性胰腺坏死(infectious pancreatic necrosis,IPN)[4]。IPN常伴随着严重的临床后果,即使在现代重症监护下,IPN相关的病死率仍可高达40%[5-6]。
胰腺坏死的程度与IPN的发生密切相关,坏死组织的感染与肠道菌群有显著关联。肠道菌群突破肠道屏障易位到坏死的胰腺组织导致IPN,大肠埃希菌、肺炎克雷伯菌和肠球菌等[5]是临床上常见的致病菌。
1 IPN的诊断2006年瑞金医院急诊科提出IPN的早期诊断标准[7]:①WBC升高达20×109/L;②体温超过39℃或低于36℃持续48 h以上;③持续性心动过速或窦缓;④早期腹部症状缓解后,再次出现严重腹胀、腹部包块;⑤PCT持续大于5 μg/L;满足上述指标再合并下述指标之一则可以诊断为坏死感染。⑥腹部(CT或MRI)可见“气泡征”或细针穿刺为阳性;⑦舒张压可呈缓慢降低至达40~50 mmHg或收缩压迅速降低至低于90 mmHg;⑧前白蛋白<150 mg/L;⑨排除外科黄疸后总胆红素持续升高。⑩呼吸性碱中毒。
在上述基础上,临床上可以通过以下方式诊断:①临床怀疑:包括发热、脓毒性标志物恶化、血培养阳性和(或)新发生的器官衰竭[8]。②坏死组织细针穿刺进行培养或宏基因组学:75%~80%的阳性率[9]。③放射学(CT或MRI)证实胰腺坏死组织内有“气泡”[1]。
2 IPN发病机制 2.1 肠道菌群失调肠道微生物群是指存在于宿主肠道中的大量微生物群落,包含数以万亿计的细菌、真菌、病毒及其他微生物。可以分为三种类型:有益菌群、机会致病菌群和致病菌群,这三类微生物之间通过相互依赖与拮抗作用维持动态平衡,维护宿主的正常生理功能[10]。SAP与肠道菌群失衡相互影响,二者互为因果,形成恶性循环。一方面,肠道是SAP最早受损的器官之一,肠道菌群随之发生变化;另一方面,肠道菌群紊乱是SAP病情加重的关键因素。
SAP患者因微循环障碍可破坏肠道缺血、缺氧和肠动力减弱[11-12]。治疗过程中的禁食、胃肠减压等虽然有助于减轻胰腺负担,但可能导致肠道营养缺乏,肠黏膜上皮萎缩甚至凋亡[13]。同时,消化液的减少不仅破坏了肠道的化学屏障,也削弱了其化学杀菌作用,促进了致病菌的繁殖[12, 14]。此外,广谱抗生素的使用可能抑制肠道菌群的生长,从而使肠道致病菌更容易繁殖[11]。
SAP发展过程中肠道菌群的变化与疾病的严重程度密切相关[15]。Zhu等[16]研究则发现,SAP患者肠道中有益菌减少,有害菌增加。ANP患者入院时肠道微生物多样性明显变化,肠杆菌科丰度较高,但梭菌科和拟杆菌科丰度较低[17]。ANP小鼠肠道微生物群结构明显失调,志贺氏菌和考拉杆菌属显著增加,而念珠菌显著减少[18]。Nicholas收集IPN患者胰周感染组织样本,培养结果主要为粪肠球菌和屎肠球菌以及大肠杆菌[19]。Tan等[20]发现,SAP患者血浆内炎症因子的水平与肠道菌群呈相关性。
2.2 肠道屏障受损人体肠道屏障系统包括肠道菌群、肠黏膜免疫系统和肠黏膜上皮[11]。完整的肠道屏障在维护肠道正常生理功能中起到至关重要的作用。
研究显示ANP患者肠道黏液层的破坏、肠道通透性显著增加、肠道屏障功能障碍[21-22]。Pan等[23]发现SAP小鼠肠道上皮细胞紧密连接蛋白表达下调。SAP小鼠肠道潘氏细胞的减少和功能异常导致抗菌肽分泌减少,进一步削弱肠屏障的防御能力。SAP患者发病后肠黏膜缺血、再灌注损伤、胃肠动力障碍、肠道营养缺乏、免疫防御受损等均可导致肠道屏障功能障碍[24]。
Treg/Th17平衡在维持肠屏障功能方面具有重要作用[25]。急性胰腺炎最初表现为无菌性炎症,腺泡细胞损伤激活转录因子NF-κB[26],招募巨噬细胞和中性粒细胞至炎症部位[27-28]。巨噬细胞作为主要的胰腺固有免疫细胞,通过激活损伤相关分子模式(DAMPs)启动免疫反应[29],并通过释放细胞因子激活适应性免疫[30]。Glaubitz的研究显示,在SAP疾病后期,Treg活化可破坏十二指肠屏障,促进共生兼性致病菌向胰腺坏死部位的移位和定植[31]。SAP患者肠道平衡被打破,变形菌丰度增加,可影响T细胞活性[32]。
研究显示,发病早期肠道内产短链脂肪酸(short-chain fatty acids,SCFAs)细菌大量减少[33]。在SAP小鼠饲料中添加SCFAs可恢复受损的小肠黏膜并降低全身内毒素水平[34]。Pan等使用SCFAs治疗SAP小鼠,发现其在胰腺和结肠黏膜中能直接抑制NLRP3炎性小体的激活,缓解肠屏障损伤[35-36]。
2.3 细菌易位胰周坏死物感染的感染源问题一直存在争议。有研究提出,肠道损伤首先在结肠中发生,且损伤更为严重,可导致细菌易位[37]。然而,Glaubitz发现胰腺坏死的细菌来源于十二指肠[31]。尽管细菌进入胰腺的途径仍有争议,但目前文献支持了几种潜在机制,包括(1)经胰管反流;(2)肠系膜淋巴结的细菌易位;(3)经肠系膜静脉入侵[38-39]。
在解剖结构上胰腺通过胰管与肠道相连,这种解剖关系为肠道微生物群向胰腺的迁移提供了通道,也构成了胰腺与肠道微生物群之间双向交流的基础[38]。研究表明,肠道微生物群可以通过胰管迁移至胰腺。通过口服假长双歧杆菌两周后,在胰腺实质中发现了该细菌,可能由于其反流进入胰管[40]。当胰腺发生局部炎症时,细菌可以通过反流进入胰管[41]。而结扎胰管能够阻止细菌通过胰管进入胰腺[31]。
在胰腺炎小鼠模型中,通过荧光标记菌株,证实了微生物从肠腔经淋巴迁移至胰腺及肠系膜淋巴结,随后在胰腺组织积累[42]。吞噬细胞也可捕获肠腔细菌运送至肠系膜淋巴结[43]。还有研究显示,结扎胸导管可减轻大鼠的肺损伤,但会加重肠道和胰腺的损伤。而胸导管引流可同时减轻大鼠肺、肠和胰腺的损伤[44-45]。
有研究显示在大鼠SAP建模18 h后,微生物迁移至下腔静脉的发生率为40%[46]。Li等[47]发现,68.9%的SAP患者外周血中存在肠道细菌的DNA表达,且细菌检出率与患者病情的严重程度呈正相关。此外,Peng等[48]在大鼠模型的外周血中检测到埃希氏菌属、志贺氏菌属、肠球菌属及肠杆菌科等多种细菌,提示这些细菌可能由肠道转移至循环系统及胰腺。菌血症已被确定为胰腺坏死感染进展及死亡的独立危险因素[47]。
3 总结现有研究表明,肠道菌群失调、肠道屏障功能障碍及细菌易位在IPN的发生和进展中起着重要作用。肠道菌群的组成变化与炎症反应、免疫调节以及胰腺损伤的严重程度密切相关。调控肠道菌群、保护肠道屏障功能和阻止肠道菌群易位可能是预防IPN的重要手段。
利益冲突 所有作者声明无利益冲突
作者贡献声明 王国鑫、万红阳: 文章撰写; 闵婕: 文献收集、整理; 安源、陈培莉: 文献整理; 毛恩强、马丽: 论文指导、修改
[1] | Banks PA, Bollen TL, Dervenis C, et al. Classification of acute pancreatitis: 2012: revision of the Atlanta classification and definitions by international consensus[J]. Gut, 2013, 62(1): 102-111. DOI:10.1136/gutjnl-2012-302779 |
[2] | 中华医学会急诊医学分会, 上海市医学会急诊专科分会. 急性胰腺炎急诊诊治专家共识[J]. 中华急诊医学杂志, 2024, 33(4): 470-479. DOI:10.3760/cma.j.issn.1671-0282.2024.04.004 |
[3] | Søreide K, Barreto SG, Pandanaboyana S. Severe acute pancreatitis[J]. Br J Surg, 2024, 111(8): znae170. DOI:10.1093/bjs/znae170 |
[4] | Tan CC, Yang L, Shi FX, et al. Early systemic inflammatory response syndrome duration predicts infected pancreatic necrosis[J]. J Gastrointest Surg, 2020, 24(3): 590-597. DOI:10.1007/s11605-019-04149-5 |
[5] | Loganathan PK, Muktesh G, Kochhar R, et al. Natural history and microbiological profiles of patients with acute pancreatitis with suspected infected pancreatic necrosis[J]. Cureus, 2024, 16(10): e71853. DOI:10.7759/cureus.71853 |
[6] | 郭丰. 重症急性胰腺炎微创诊治思考[J]. 中华急诊医学杂志, 2024, 33(10): 1353-1355. DOI:10.3760/cma.j.issn.1671-0282.2024.10.002 |
[7] | 毛恩强. 重症急性胰腺炎合并感染的防治[J]. 肝胆外科杂志, 2006(6) 463-464, 480. DOI:10.3969/j.issn.1006-4761.2006.06.026 |
[8] | Working Group IAP/APA Acute Pancreatitis Guidelines. IAP/APA evidence-based guidelines for the management of acute pancreatitis[J]. Pancreatology, 2013, 13(4): e1-e15. DOI:10.1016/j.pan.2013.07.063 |
[9] | Hong DH, Wang P, Xu Y, et al. Metagenomic next-generation sequencing-based fine-needle aspiration in patients with suspected infected pancreatic necrosis[J]. Clin Transl Gastroenterol, 2024, 15(7): e00726. DOI:10.14309/ctg.0000000000000726 |
[10] | Cen ME, Wang F, Su Y, et al. Gastrointestinal microecology: a crucial and potential target in acute pancreatitis[J]. Apoptosis, 2018, 23(7/8): 377-387. DOI:10.1007/s10495-018-1464-9 |
[11] | Lu WW, Chen X, Ni JL, et al. The role of gut microbiota in the pathogenesis and treatment of acute pancreatitis: a narrative review[J]. Ann Palliat Med, 2021, 10(3): 3445-3451. DOI:10.21037/apm-21-429 |
[12] | Beger HG, Rau BM. Severe acute pancreatitis: Clinical course and management[J]. World J Gastroenterol, 2007, 13(38): 5043-5051. DOI:10.3748/wjg.v13.i38.5043 |
[13] | 夏玫, 龚建平, 辛力. 急性胰腺炎的肠内营养支持治疗进展[J]. 中国现代普通外科进展, 2018, 21(7): 579-581. DOI:10.3969/j.issn.1009-9905.2018.07.023 |
[14] | Zou XP, Chen M, Wei W, et al. Effects of enteral immunonutrition on the maintenance of gut barrier function and immune function in pigs with severe acute pancreatitis[J]. JPEN J Parenter Enteral Nutr, 2010, 34(5): 554-566. DOI:10.1177/0148607110362691 |
[15] | Memba R, Duggan SN, Ni Chonchubhair HM, et al. The potential role of gut microbiota in pancreatic disease: a systematic review[J]. Pancreatology, 2017, 17(6): 867-874. DOI:10.1016/j.pan.2017.09.002 |
[16] | Zhu Y, He C, Li XY, et al. Gut microbiota dysbiosis worsens the severity of acute pancreatitis in patients and mice[J]. J Gastroenterol, 2019, 54(4): 347-358. DOI:10.1007/s00535-018-1529-0 |
[17] | Zou ML, Yang ZH, Fan Y, et al. Gut microbiota on admission as predictive biomarker for acute necrotizing pancreatitis[J]. Front Immunol, 2022, 13: 988326. DOI:10.3389/fimmu.2022.988326 |
[18] | Chen J, Huang CL, Wang JJ, et al. Dysbiosis of intestinal microbiota and decrease in paneth cell antimicrobial peptide level during acute necrotizing pancreatitis in rats[J]. PLoS One, 2017, 12(4): e0176583. DOI:10.1371/journal.pone.0176583 |
[19] | Mowbray NG, Ben-Ismaeil B, Hammoda M, et al. The microbiology of infected pancreatic necrosis[J]. Hepatobiliary Pancreat Dis Int, 2018, 17(5): 456-460. DOI:10.1016/j.hbpd.2018.08.007 |
[20] | Tan CC, Ling ZX, Huang Y, et al. Dysbiosis of intestinal microbiota associated with inflammation involved in the progression of acute pancreatitis[J]. Pancreas, 2015, 44(6): 868-875. DOI:10.1097/MPA.0000000000000355 |
[21] | Fishman JE, Levy G, Alli V, et al. The intestinal mucus layer is a critical component of the gut barrier that is damaged during acute pancreatitis[J]. Shock, 2014, 42(3): 264-270. DOI:10.1097/SHK.0000000000000209 |
[22] | Agarwal S, Goswami P, Poudel S, et al. Acute pancreatitis is characterized by generalized intestinal barrier dysfunction in early stage[J]. Pancreatology, 2023, 23(1): 9-17. DOI:10.1016/j.pan.2022.11.011 |
[23] | Pan XH, Ye LY, Ren ZN, et al. Biochanin A ameliorates caerulein-induced acute pancreatitis and associated intestinal injury in mice by inhibiting TLR4 signaling[J]. J Nutr Biochem, 2023, 113: 109229. DOI:10.1016/j.jnutbio.2022.109229 |
[24] | Zhang XP, Zhang J, Song QL, et al. Mechanism of acute pancreatitis complicated with injury of intestinal mucosa barrier[J]. J Zhejiang Univ Sci B, 2007, 8(12): 888-895. DOI:10.1631/jzus.2007.B0888 |
[25] | Neumann C, Blume J, Roy U, et al. C-Maf-dependent Treg cell control of intestinal TH17 cells and IgA establishes host-microbiota homeostasis[J]. Nat Immunol, 2019, 20(4): 471-481. DOI:10.1038/s41590-019-0316-2 |
[26] | Gukovsky I, Gukovskaya AS, Blinman TA, et al. Early NF-kappaB activation is associated with hormone-induced pancreatitis[J]. Am J Physiol, 1998, 275(6): G1402-G1414. DOI:10.1152/ajpgi.1998.275.6.G1402 |
[27] | Gukovskaya AS, Vaquero E, Zaninovic V, et al. Neutrophils and NADPH oxidase mediate intrapancreatic trypsin activation in murine experimental acute pancreatitis[J]. Gastroenterology, 2002, 122(4): 974-984. DOI:10.1053/gast.2002.32409 |
[28] | John DS, Aschenbach J, Krüger B, et al. Deficiency of cathepsin C ameliorates severity of acute pancreatitis by reduction of neutrophil elastase activation and cleavage of E-cadherin[J]. J Biol Chem, 2019, 294(2): 697-707. DOI:10.1074/jbc.RA118.004376 |
[29] | Wilden A, Glaubitz J, Otto O, et al. Mobilization of CD11b+/Ly6chi monocytes causes multi organ dysfunction syndrome in acute pancreatitis[J]. Front Immunol, 2022, 13: 991295. DOI:10.3389/fimmu.2022.991295 |
[30] | Sendler M, van den Brandt C, Glaubitz J, et al. NLRP3 inflammasome regulates development of systemic inflammatory response and compensatory anti-inflammatory response syndromes in mice with acute pancreatitis[J]. Gastroenterology, 2020, 158(1): 253-269. DOI:10.1053/j.gastro.2019.09.040 |
[31] | Glaubitz J, Wilden A, Frost F, et al. Activated regulatory T-cells promote duodenal bacterial translocation into necrotic areas in severe acute pancreatitis[J]. Gut, 2023, 72(7): 1355-1369. DOI:10.1136/gutjnl-2022-327448 |
[32] | Garrett WS, Gallini CA, Yatsunenko T, et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis[J]. Cell Host Microbe, 2010, 8(3): 292-300. DOI:10.1016/j.chom.2010.08.004 |
[33] | Bach Knudsen KE, Lærke HN, Hedemann MS, et al. Impact of diet-modulated butyrate production on intestinal barrier function and inflammation[J]. Nutrients, 2018, 10(10): 1499. DOI:10.3390/nu10101499 |
[34] | Zhou D, Pan Q, Xin FZ, et al. Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier[J]. World J Gastroenterol, 2017, 23(1): 60-75. DOI:10.3748/wjg.v23.i1.60 |
[35] | Pan XH, Fang X, Wang F, et al. Butyrate ameliorates caerulein-induced acute pancreatitis and associated intestinal injury by tissue-specific mechanisms[J]. Br J Pharmacol, 2019, 176(23): 4446-4461. DOI:10.1111/bph.14806 |
[36] | Li XY, He C, Li NS, et al. The interplay between the gut microbiota and NLRP3 activation affects the severity of acute pancreatitis in mice[J]. Gut Microbes, 2020, 11(6): 1774-1789. DOI:10.1080/19490976.2020.1770042 |
[37] | Meriläinen S, Mäkelä J, Sormunen R, et al. Effect of acute pancreatitis on porcine intestine: a morphological study[J]. Ultrastruct Pathol, 2013, 37(2): 127-138. DOI:10.3109/01913123.2012.745638 |
[38] | Thomas RM, Jobin C. Microbiota in pancreatic health and disease: the next frontier in microbiome research[J]. Nat Rev Gastroenterol Hepatol, 2019, 17(1): 53-64. DOI:10.1038/s41575-019-0242-7 |
[39] | Bravo-Blas A, Utriainen L, Clay SL, et al. Salmonella enterica serovar typhimurium travels to mesenteric lymph nodes both with host cells and autonomously[J]. J Immunol, 2019, 202(1): 260-267. DOI:10.4049/jimmunol.1701254 |
[40] | Pushalkar S, Hundeyin M, Daley D, et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression[J]. Cancer Discov, 2018, 8(4): 403-416. DOI:10.1158/2159-8290.CD-17-1134 |
[41] | MacFie J, O'Boyle C, Mitchell CJ, et al. Gut origin of sepsis: a prospective study investigating associations between bacterial translocation, gastric microflora, and septic morbidity[J]. Gut, 1999, 45(2): 223-228. DOI:10.1136/gut.45.2.223 |
[42] | Frost F, Kacprowski T, Rühlemann M, et al. Long-term instability of the intestinal microbiome is associated with metabolic liver disease, low microbiota diversity, diabetes mellitus and impaired exocrine pancreatic function[J]. Gut, 2021, 70(3): 522-530. DOI:10.1136/gutjnl-2020-322753 |
[43] | Diehl GE, Longman RS, Zhang JX, et al. Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX3CR1hi cells[J]. Nature, 2013, 494(7435): 116-120. DOI:10.1038/nature11809 |
[44] | Liu YJ, Chen CX, Sun Q, et al. Mesenteric lymph duct drainage attenuates lung inflammatory injury and inhibits endothelial cell apoptosis in septic rats[J]. Biomed Res Int, 2020, 2020: 3049302. DOI:10.1155/2020/3049302 |
[45] | González-Loyola A, Bovay E, Kim J, et al. FOXC2 controls adult lymphatic endothelial specialization, function, and gut lymphatic barrier preventing multiorgan failure[J]. Sci Adv, 2021, 7(29): eabf4335. DOI:10.1126/sciadv.abf4335 |
[46] | Wang HL, Li C, Jiang YJ, et al. Effects of bacterial translocation and autophagy on acute lung injury induced by severe acute pancreatitis[J]. Gastroenterol Res Pract, 2020, 2020: 8953453. DOI:10.1155/2020/8953453 |
[47] | Li QR, Wang CY, Tang C, et al. Bacteremia in patients with acute pancreatitis as revealed by 16S ribosomal RNA gene-based techniques[J]. Crit Care Med, 2013, 41(8): 1938-1950. DOI:10.1097/CCM.0b013e31828a3dba |
[48] | Peng JS, Liu ZH, Li CJ, et al. Development of a real-time PCR method for the detection of bacterial colonization in rat models of severe acute pancreatitis[J]. Chin Med J (Engl), 2010, 123(3): 326-331. |