中华急诊医学杂志  2025, Vol. 34 Issue (6): 902-906   DOI: 10.3760/cma.j.issn.1671-0282.2025.06.030
肠道菌群在感染性胰腺坏死中的作用
王国鑫 , 万红阳 , 闵婕 , 安源 , 陈培莉 , 毛恩强 , 马丽     
上海交通大学医学院附属瑞金医院急诊科,上海 200025

重症急性胰腺炎(severe acute pancreatitis,SAP)是常见的急危重症疾病之一,其特点是持续的多器官功能障碍综合征、全身炎症反应综合征[1-2]。进一步可导致胰腺及其周围组织坏死,形成急性坏死性胰腺炎(acute necrotizing pancreatitis,ANP)[3]。ANP通常在疾病发作后第2至第3周出现,30%~40%的患者会继发感染,即感染性胰腺坏死(infectious pancreatic necrosis,IPN)[4]。IPN常伴随着严重的临床后果,即使在现代重症监护下,IPN相关的病死率仍可高达40%[5-6]

胰腺坏死的程度与IPN的发生密切相关,坏死组织的感染与肠道菌群有显著关联。肠道菌群突破肠道屏障易位到坏死的胰腺组织导致IPN,大肠埃希菌、肺炎克雷伯菌和肠球菌等[5]是临床上常见的致病菌。

1 IPN的诊断

2006年瑞金医院急诊科提出IPN的早期诊断标准[7]:①WBC升高达20×109/L;②体温超过39℃或低于36℃持续48 h以上;③持续性心动过速或窦缓;④早期腹部症状缓解后,再次出现严重腹胀、腹部包块;⑤PCT持续大于5 μg/L;满足上述指标再合并下述指标之一则可以诊断为坏死感染。⑥腹部(CT或MRI)可见“气泡征”或细针穿刺为阳性;⑦舒张压可呈缓慢降低至达40~50 mmHg或收缩压迅速降低至低于90 mmHg;⑧前白蛋白<150 mg/L;⑨排除外科黄疸后总胆红素持续升高。⑩呼吸性碱中毒。

在上述基础上,临床上可以通过以下方式诊断:①临床怀疑:包括发热、脓毒性标志物恶化、血培养阳性和(或)新发生的器官衰竭[8]。②坏死组织细针穿刺进行培养或宏基因组学:75%~80%的阳性率[9]。③放射学(CT或MRI)证实胰腺坏死组织内有“气泡”[1]

2 IPN发病机制 2.1 肠道菌群失调

肠道微生物群是指存在于宿主肠道中的大量微生物群落,包含数以万亿计的细菌、真菌、病毒及其他微生物。可以分为三种类型:有益菌群、机会致病菌群和致病菌群,这三类微生物之间通过相互依赖与拮抗作用维持动态平衡,维护宿主的正常生理功能[10]。SAP与肠道菌群失衡相互影响,二者互为因果,形成恶性循环。一方面,肠道是SAP最早受损的器官之一,肠道菌群随之发生变化;另一方面,肠道菌群紊乱是SAP病情加重的关键因素。

SAP患者因微循环障碍可破坏肠道缺血、缺氧和肠动力减弱[11-12]。治疗过程中的禁食、胃肠减压等虽然有助于减轻胰腺负担,但可能导致肠道营养缺乏,肠黏膜上皮萎缩甚至凋亡[13]。同时,消化液的减少不仅破坏了肠道的化学屏障,也削弱了其化学杀菌作用,促进了致病菌的繁殖[12, 14]。此外,广谱抗生素的使用可能抑制肠道菌群的生长,从而使肠道致病菌更容易繁殖[11]

SAP发展过程中肠道菌群的变化与疾病的严重程度密切相关[15]。Zhu等[16]研究则发现,SAP患者肠道中有益菌减少,有害菌增加。ANP患者入院时肠道微生物多样性明显变化,肠杆菌科丰度较高,但梭菌科和拟杆菌科丰度较低[17]。ANP小鼠肠道微生物群结构明显失调,志贺氏菌和考拉杆菌属显著增加,而念珠菌显著减少[18]。Nicholas收集IPN患者胰周感染组织样本,培养结果主要为粪肠球菌和屎肠球菌以及大肠杆菌[19]。Tan等[20]发现,SAP患者血浆内炎症因子的水平与肠道菌群呈相关性。

2.2 肠道屏障受损

人体肠道屏障系统包括肠道菌群、肠黏膜免疫系统和肠黏膜上皮[11]。完整的肠道屏障在维护肠道正常生理功能中起到至关重要的作用。

研究显示ANP患者肠道黏液层的破坏、肠道通透性显著增加、肠道屏障功能障碍[21-22]。Pan等[23]发现SAP小鼠肠道上皮细胞紧密连接蛋白表达下调。SAP小鼠肠道潘氏细胞的减少和功能异常导致抗菌肽分泌减少,进一步削弱肠屏障的防御能力。SAP患者发病后肠黏膜缺血、再灌注损伤、胃肠动力障碍、肠道营养缺乏、免疫防御受损等均可导致肠道屏障功能障碍[24]

Treg/Th17平衡在维持肠屏障功能方面具有重要作用[25]。急性胰腺炎最初表现为无菌性炎症,腺泡细胞损伤激活转录因子NF-κB[26],招募巨噬细胞和中性粒细胞至炎症部位[27-28]。巨噬细胞作为主要的胰腺固有免疫细胞,通过激活损伤相关分子模式(DAMPs)启动免疫反应[29],并通过释放细胞因子激活适应性免疫[30]。Glaubitz的研究显示,在SAP疾病后期,Treg活化可破坏十二指肠屏障,促进共生兼性致病菌向胰腺坏死部位的移位和定植[31]。SAP患者肠道平衡被打破,变形菌丰度增加,可影响T细胞活性[32]

研究显示,发病早期肠道内产短链脂肪酸(short-chain fatty acids,SCFAs)细菌大量减少[33]。在SAP小鼠饲料中添加SCFAs可恢复受损的小肠黏膜并降低全身内毒素水平[34]。Pan等使用SCFAs治疗SAP小鼠,发现其在胰腺和结肠黏膜中能直接抑制NLRP3炎性小体的激活,缓解肠屏障损伤[35-36]

2.3 细菌易位

胰周坏死物感染的感染源问题一直存在争议。有研究提出,肠道损伤首先在结肠中发生,且损伤更为严重,可导致细菌易位[37]。然而,Glaubitz发现胰腺坏死的细菌来源于十二指肠[31]。尽管细菌进入胰腺的途径仍有争议,但目前文献支持了几种潜在机制,包括(1)经胰管反流;(2)肠系膜淋巴结的细菌易位;(3)经肠系膜静脉入侵[38-39]

在解剖结构上胰腺通过胰管与肠道相连,这种解剖关系为肠道微生物群向胰腺的迁移提供了通道,也构成了胰腺与肠道微生物群之间双向交流的基础[38]。研究表明,肠道微生物群可以通过胰管迁移至胰腺。通过口服假长双歧杆菌两周后,在胰腺实质中发现了该细菌,可能由于其反流进入胰管[40]。当胰腺发生局部炎症时,细菌可以通过反流进入胰管[41]。而结扎胰管能够阻止细菌通过胰管进入胰腺[31]

在胰腺炎小鼠模型中,通过荧光标记菌株,证实了微生物从肠腔经淋巴迁移至胰腺及肠系膜淋巴结,随后在胰腺组织积累[42]。吞噬细胞也可捕获肠腔细菌运送至肠系膜淋巴结[43]。还有研究显示,结扎胸导管可减轻大鼠的肺损伤,但会加重肠道和胰腺的损伤。而胸导管引流可同时减轻大鼠肺、肠和胰腺的损伤[44-45]

有研究显示在大鼠SAP建模18 h后,微生物迁移至下腔静脉的发生率为40%[46]。Li等[47]发现,68.9%的SAP患者外周血中存在肠道细菌的DNA表达,且细菌检出率与患者病情的严重程度呈正相关。此外,Peng等[48]在大鼠模型的外周血中检测到埃希氏菌属、志贺氏菌属、肠球菌属及肠杆菌科等多种细菌,提示这些细菌可能由肠道转移至循环系统及胰腺。菌血症已被确定为胰腺坏死感染进展及死亡的独立危险因素[47]

3 总结

现有研究表明,肠道菌群失调、肠道屏障功能障碍及细菌易位在IPN的发生和进展中起着重要作用。肠道菌群的组成变化与炎症反应、免疫调节以及胰腺损伤的严重程度密切相关。调控肠道菌群、保护肠道屏障功能和阻止肠道菌群易位可能是预防IPN的重要手段。

利益冲突  所有作者声明无利益冲突

作者贡献声明  王国鑫、万红阳: 文章撰写; 闵婕: 文献收集、整理; 安源、陈培莉: 文献整理; 毛恩强、马丽: 论文指导、修改

参考文献
[1] Banks PA, Bollen TL, Dervenis C, et al. Classification of acute pancreatitis: 2012: revision of the Atlanta classification and definitions by international consensus[J]. Gut, 2013, 62(1): 102-111. DOI:10.1136/gutjnl-2012-302779
[2] 中华医学会急诊医学分会, 上海市医学会急诊专科分会. 急性胰腺炎急诊诊治专家共识[J]. 中华急诊医学杂志, 2024, 33(4): 470-479. DOI:10.3760/cma.j.issn.1671-0282.2024.04.004
[3] Søreide K, Barreto SG, Pandanaboyana S. Severe acute pancreatitis[J]. Br J Surg, 2024, 111(8): znae170. DOI:10.1093/bjs/znae170
[4] Tan CC, Yang L, Shi FX, et al. Early systemic inflammatory response syndrome duration predicts infected pancreatic necrosis[J]. J Gastrointest Surg, 2020, 24(3): 590-597. DOI:10.1007/s11605-019-04149-5
[5] Loganathan PK, Muktesh G, Kochhar R, et al. Natural history and microbiological profiles of patients with acute pancreatitis with suspected infected pancreatic necrosis[J]. Cureus, 2024, 16(10): e71853. DOI:10.7759/cureus.71853
[6] 郭丰. 重症急性胰腺炎微创诊治思考[J]. 中华急诊医学杂志, 2024, 33(10): 1353-1355. DOI:10.3760/cma.j.issn.1671-0282.2024.10.002
[7] 毛恩强. 重症急性胰腺炎合并感染的防治[J]. 肝胆外科杂志, 2006(6) 463-464, 480. DOI:10.3969/j.issn.1006-4761.2006.06.026
[8] Working Group IAP/APA Acute Pancreatitis Guidelines. IAP/APA evidence-based guidelines for the management of acute pancreatitis[J]. Pancreatology, 2013, 13(4): e1-e15. DOI:10.1016/j.pan.2013.07.063
[9] Hong DH, Wang P, Xu Y, et al. Metagenomic next-generation sequencing-based fine-needle aspiration in patients with suspected infected pancreatic necrosis[J]. Clin Transl Gastroenterol, 2024, 15(7): e00726. DOI:10.14309/ctg.0000000000000726
[10] Cen ME, Wang F, Su Y, et al. Gastrointestinal microecology: a crucial and potential target in acute pancreatitis[J]. Apoptosis, 2018, 23(7/8): 377-387. DOI:10.1007/s10495-018-1464-9
[11] Lu WW, Chen X, Ni JL, et al. The role of gut microbiota in the pathogenesis and treatment of acute pancreatitis: a narrative review[J]. Ann Palliat Med, 2021, 10(3): 3445-3451. DOI:10.21037/apm-21-429
[12] Beger HG, Rau BM. Severe acute pancreatitis: Clinical course and management[J]. World J Gastroenterol, 2007, 13(38): 5043-5051. DOI:10.3748/wjg.v13.i38.5043
[13] 夏玫, 龚建平, 辛力. 急性胰腺炎的肠内营养支持治疗进展[J]. 中国现代普通外科进展, 2018, 21(7): 579-581. DOI:10.3969/j.issn.1009-9905.2018.07.023
[14] Zou XP, Chen M, Wei W, et al. Effects of enteral immunonutrition on the maintenance of gut barrier function and immune function in pigs with severe acute pancreatitis[J]. JPEN J Parenter Enteral Nutr, 2010, 34(5): 554-566. DOI:10.1177/0148607110362691
[15] Memba R, Duggan SN, Ni Chonchubhair HM, et al. The potential role of gut microbiota in pancreatic disease: a systematic review[J]. Pancreatology, 2017, 17(6): 867-874. DOI:10.1016/j.pan.2017.09.002
[16] Zhu Y, He C, Li XY, et al. Gut microbiota dysbiosis worsens the severity of acute pancreatitis in patients and mice[J]. J Gastroenterol, 2019, 54(4): 347-358. DOI:10.1007/s00535-018-1529-0
[17] Zou ML, Yang ZH, Fan Y, et al. Gut microbiota on admission as predictive biomarker for acute necrotizing pancreatitis[J]. Front Immunol, 2022, 13: 988326. DOI:10.3389/fimmu.2022.988326
[18] Chen J, Huang CL, Wang JJ, et al. Dysbiosis of intestinal microbiota and decrease in paneth cell antimicrobial peptide level during acute necrotizing pancreatitis in rats[J]. PLoS One, 2017, 12(4): e0176583. DOI:10.1371/journal.pone.0176583
[19] Mowbray NG, Ben-Ismaeil B, Hammoda M, et al. The microbiology of infected pancreatic necrosis[J]. Hepatobiliary Pancreat Dis Int, 2018, 17(5): 456-460. DOI:10.1016/j.hbpd.2018.08.007
[20] Tan CC, Ling ZX, Huang Y, et al. Dysbiosis of intestinal microbiota associated with inflammation involved in the progression of acute pancreatitis[J]. Pancreas, 2015, 44(6): 868-875. DOI:10.1097/MPA.0000000000000355
[21] Fishman JE, Levy G, Alli V, et al. The intestinal mucus layer is a critical component of the gut barrier that is damaged during acute pancreatitis[J]. Shock, 2014, 42(3): 264-270. DOI:10.1097/SHK.0000000000000209
[22] Agarwal S, Goswami P, Poudel S, et al. Acute pancreatitis is characterized by generalized intestinal barrier dysfunction in early stage[J]. Pancreatology, 2023, 23(1): 9-17. DOI:10.1016/j.pan.2022.11.011
[23] Pan XH, Ye LY, Ren ZN, et al. Biochanin A ameliorates caerulein-induced acute pancreatitis and associated intestinal injury in mice by inhibiting TLR4 signaling[J]. J Nutr Biochem, 2023, 113: 109229. DOI:10.1016/j.jnutbio.2022.109229
[24] Zhang XP, Zhang J, Song QL, et al. Mechanism of acute pancreatitis complicated with injury of intestinal mucosa barrier[J]. J Zhejiang Univ Sci B, 2007, 8(12): 888-895. DOI:10.1631/jzus.2007.B0888
[25] Neumann C, Blume J, Roy U, et al. C-Maf-dependent Treg cell control of intestinal TH17 cells and IgA establishes host-microbiota homeostasis[J]. Nat Immunol, 2019, 20(4): 471-481. DOI:10.1038/s41590-019-0316-2
[26] Gukovsky I, Gukovskaya AS, Blinman TA, et al. Early NF-kappaB activation is associated with hormone-induced pancreatitis[J]. Am J Physiol, 1998, 275(6): G1402-G1414. DOI:10.1152/ajpgi.1998.275.6.G1402
[27] Gukovskaya AS, Vaquero E, Zaninovic V, et al. Neutrophils and NADPH oxidase mediate intrapancreatic trypsin activation in murine experimental acute pancreatitis[J]. Gastroenterology, 2002, 122(4): 974-984. DOI:10.1053/gast.2002.32409
[28] John DS, Aschenbach J, Krüger B, et al. Deficiency of cathepsin C ameliorates severity of acute pancreatitis by reduction of neutrophil elastase activation and cleavage of E-cadherin[J]. J Biol Chem, 2019, 294(2): 697-707. DOI:10.1074/jbc.RA118.004376
[29] Wilden A, Glaubitz J, Otto O, et al. Mobilization of CD11b+/Ly6chi monocytes causes multi organ dysfunction syndrome in acute pancreatitis[J]. Front Immunol, 2022, 13: 991295. DOI:10.3389/fimmu.2022.991295
[30] Sendler M, van den Brandt C, Glaubitz J, et al. NLRP3 inflammasome regulates development of systemic inflammatory response and compensatory anti-inflammatory response syndromes in mice with acute pancreatitis[J]. Gastroenterology, 2020, 158(1): 253-269. DOI:10.1053/j.gastro.2019.09.040
[31] Glaubitz J, Wilden A, Frost F, et al. Activated regulatory T-cells promote duodenal bacterial translocation into necrotic areas in severe acute pancreatitis[J]. Gut, 2023, 72(7): 1355-1369. DOI:10.1136/gutjnl-2022-327448
[32] Garrett WS, Gallini CA, Yatsunenko T, et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis[J]. Cell Host Microbe, 2010, 8(3): 292-300. DOI:10.1016/j.chom.2010.08.004
[33] Bach Knudsen KE, Lærke HN, Hedemann MS, et al. Impact of diet-modulated butyrate production on intestinal barrier function and inflammation[J]. Nutrients, 2018, 10(10): 1499. DOI:10.3390/nu10101499
[34] Zhou D, Pan Q, Xin FZ, et al. Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier[J]. World J Gastroenterol, 2017, 23(1): 60-75. DOI:10.3748/wjg.v23.i1.60
[35] Pan XH, Fang X, Wang F, et al. Butyrate ameliorates caerulein-induced acute pancreatitis and associated intestinal injury by tissue-specific mechanisms[J]. Br J Pharmacol, 2019, 176(23): 4446-4461. DOI:10.1111/bph.14806
[36] Li XY, He C, Li NS, et al. The interplay between the gut microbiota and NLRP3 activation affects the severity of acute pancreatitis in mice[J]. Gut Microbes, 2020, 11(6): 1774-1789. DOI:10.1080/19490976.2020.1770042
[37] Meriläinen S, Mäkelä J, Sormunen R, et al. Effect of acute pancreatitis on porcine intestine: a morphological study[J]. Ultrastruct Pathol, 2013, 37(2): 127-138. DOI:10.3109/01913123.2012.745638
[38] Thomas RM, Jobin C. Microbiota in pancreatic health and disease: the next frontier in microbiome research[J]. Nat Rev Gastroenterol Hepatol, 2019, 17(1): 53-64. DOI:10.1038/s41575-019-0242-7
[39] Bravo-Blas A, Utriainen L, Clay SL, et al. Salmonella enterica serovar typhimurium travels to mesenteric lymph nodes both with host cells and autonomously[J]. J Immunol, 2019, 202(1): 260-267. DOI:10.4049/jimmunol.1701254
[40] Pushalkar S, Hundeyin M, Daley D, et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression[J]. Cancer Discov, 2018, 8(4): 403-416. DOI:10.1158/2159-8290.CD-17-1134
[41] MacFie J, O'Boyle C, Mitchell CJ, et al. Gut origin of sepsis: a prospective study investigating associations between bacterial translocation, gastric microflora, and septic morbidity[J]. Gut, 1999, 45(2): 223-228. DOI:10.1136/gut.45.2.223
[42] Frost F, Kacprowski T, Rühlemann M, et al. Long-term instability of the intestinal microbiome is associated with metabolic liver disease, low microbiota diversity, diabetes mellitus and impaired exocrine pancreatic function[J]. Gut, 2021, 70(3): 522-530. DOI:10.1136/gutjnl-2020-322753
[43] Diehl GE, Longman RS, Zhang JX, et al. Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX3CR1hi cells[J]. Nature, 2013, 494(7435): 116-120. DOI:10.1038/nature11809
[44] Liu YJ, Chen CX, Sun Q, et al. Mesenteric lymph duct drainage attenuates lung inflammatory injury and inhibits endothelial cell apoptosis in septic rats[J]. Biomed Res Int, 2020, 2020: 3049302. DOI:10.1155/2020/3049302
[45] González-Loyola A, Bovay E, Kim J, et al. FOXC2 controls adult lymphatic endothelial specialization, function, and gut lymphatic barrier preventing multiorgan failure[J]. Sci Adv, 2021, 7(29): eabf4335. DOI:10.1126/sciadv.abf4335
[46] Wang HL, Li C, Jiang YJ, et al. Effects of bacterial translocation and autophagy on acute lung injury induced by severe acute pancreatitis[J]. Gastroenterol Res Pract, 2020, 2020: 8953453. DOI:10.1155/2020/8953453
[47] Li QR, Wang CY, Tang C, et al. Bacteremia in patients with acute pancreatitis as revealed by 16S ribosomal RNA gene-based techniques[J]. Crit Care Med, 2013, 41(8): 1938-1950. DOI:10.1097/CCM.0b013e31828a3dba
[48] Peng JS, Liu ZH, Li CJ, et al. Development of a real-time PCR method for the detection of bacterial colonization in rat models of severe acute pancreatitis[J]. Chin Med J (Engl), 2010, 123(3): 326-331.