中华急诊医学杂志  2015, Vol. 24 Issue (8): 825-829
脂多糖诱导脓毒症小鼠心功能障碍机制研究
刘安雷, 朱华栋, 于学忠, 刘洁, 马帅, 刘聚源, 郭树彬     
100730 北京,中国医学科学院 北京协和医学院 北京协和医院急诊科
摘要目的 对脂多糖(LPS)诱导的脓毒症小鼠心功能进行观察,探讨LPS诱导脓毒症小鼠心功能障碍的病理生理机制。 方法 选取8周龄的雄性C57BL/6小鼠共60只随机(随机数字法)分为4组,对照组(n=15)和实验组共3组(n=15)。对照组给予生理盐水腹腔注射(10 mg/kg);实验组行LPS腹腔注射(10 mg/kg),分别于6、12、24 h后通过超声观察各组小鼠心功能(n=12)。取小鼠心、肾、肺组织包埋后HE染色(n=6),鉴定模型,通过免疫组化法(n=3)检测各组心脏组织PECAM-1、α-SMA的表达。运用RT-PCR技术检测小鼠心肌血管内皮生长因子(VEGF)和低氧诱导因子(HIF-1α)表达水平,采用Western blot方法检测小鼠心脏p53与HIF-1α表达量,用ELISA法检测肿瘤坏死因子(TNF-α)和白介素(IL-6)的表达水平。所得数据采用独立样本t检验和单因素方差分析。 结果 实验组小鼠心脏左室收缩期前壁厚度、左室舒张期前壁厚度、左心室舒张期内径增加,每搏输出量降低,与对照组比较差异具有统计学意义(P<0.05)。通过免疫组化发现,实验组小鼠心脏中新生血管数量较对照组增加(P<0.05);RT-PCR示实验组小鼠心脏中VEGF、HIF-1α表达量增高(P<0.05);Western blot示实验组HIF-1α、p53的表达水平较对照组明显增高(P<0.05);ELISA检测结果显示实验组VEGF、TNF-α等细胞因子表达水平较对照组增高(P<0.05)。 结论 脂多糖可导致小鼠心功能障碍,在此过程中心肌血管再生及细胞凋亡并存,VEGF和HIF-1α等参与了血管再生,而BAX、p53等参与了细胞凋亡。
关键词脓毒症     病理生理学机制     心功能障碍     血管再生     细胞凋亡    
The mechanisms of LPS-induced cardiac dysfunction in septic mice
Liu Anlei,Zhu Huadong,Yu Xuezhong,Liu Jie,Ma Shuai,Liu Juyuan,Guo Shubin     
Emergency Department, Beijing Chaoyang Hospital of the Capital Medical University, Beijing 100020, China
Corresponding author: Guo Shubin, Email: shubinguo@126.com
Abstract: Objective To study about the cardiac function of the mice suffering from sepsis induced by lipopolysaccharide (LPS) so as to probe the physiopathologic mechanism of the cardiac dysfunction of the mice. Method Sixty male C57BL/6 mice of eight weeks old were randomly (random number) divided into four groups: one control group (n=15) and three experimental groups (n=15 in each group). The mice of control group received intra-peritoneal injection of normal saline (10 mg/kg) while the mice of experimental groups got intra-peritoneal injection of LPS (10 mg/kg). The cardiac function of mice (n=12) was determined by echocardiography 6 h, 12hand 24hlater, respectively. The heart, kidney and lung tissues of mice (n=6) were stained with Haematoxylin-Eosin (HE) staining after embedding with paraffin for observing the histopathological changes under optic microscopy. The expressions of PECAM-1 and α-SMA of the heart tissue of mice (n=3) in three groups determined by immunohistochemical method. The RT-PCR method was used to test the expressions of VEGF (vascular endothelial growth factor) and HIF-α (hypoxia-inducible factor) of the myocardium of mice. In addition, the Western blot method was employed to test the levels of p53 and HIF-1α proteins in myocardium of mice, while ELISA was utilized to detect the level of tumor necrosis factor-α (TNF-α) and the interleukin-6 (IL-6). The data were analyzed by independent samples of t-test and one-way ANOVA respectively. Results The experiment result proved that the thickness of anterior wall of left ventricle of mice during systolic and diastolic periods increased and the inner diameter of the left ventricle also increased during the diastolic period in mice of the experimental group, while the stroke volume decreased compared with the control group (P<0.05). The immunohistochemical method showed that the new vessels of the mice’ s heart in experimental groups increased compared with the control group (P<0.05). RT-PCR showed the expressions of VEGF and HIF-1α of the mice heart of experimental group increased (P<0.05) and Western blot showed the levels of HIF-1α and p53 proteins in experimental groups increased significantly compared with the control group. The experimental group had higher levels of VEGF,HIF-1α, and IL-6 were evidenced by using ELISA than those of the control group(P<0.05). Conclusions The lipopolysaccharide can lead to cardiac dysfunction. In this process, myocardium angiogenesis and apoptosis phenomenon coexists, as VEGF and HIF-1α participating in angiogenesis, whereas BAX and p53 playingarole in the process of apoptosis.
Key words: Sepsis     Pathophysiological mechanism     Cardiac dysfunction     Angiogenesis     Apoptosis    
脓毒症患者可出现不同程度的心功能障碍,严重时导致多器官功能衰竭[1, 2, 3],研究脓毒症心功能障碍病理生理学机制尤为重要。细胞凋亡与血管新生是包括肿瘤等各个领域的研究热点,但在脓毒症领域中研究较少[4, 5, 6]。本研究通过组织病理学观察同时选取特异性标志物进行分子生物学检测,来探讨脓毒症心功能障碍中的病理生理学机制。

1 材料与方法

1.1 材料

清洁级8~10周C57BL6雄性小鼠60只,体质量24~26 g(北京维通利华实验动物基础有限公司),脂多糖(LPS)(美国Sigma公司),α-SMA抗体、PECAM-A抗体及SABC免疫组化染色试剂盒(美国Santa Cruse公司),TUNEL试剂盒(美国Roche公司)。Vevo770TM高分辨小动物超声成像系统及RMV707B型高频超声探头(加拿大visualsonies公司)。

1.2 动物分组及模型构建

动物分组采用随机区组法,利用随机数字表将实验动物分为:对照组(n=15)和实验组共3组(n=15)。对照组用以生理盐水(10 mg/kg)腹腔注射;实验组给予脂多糖(LPS)(10 mg/kg)腹腔注射,造模时间6 h。

1.3 超声心动图检测

RMV707B型高频超声探头在小鼠胸骨旁通过二维超声和M型超声进行检测,测量指标包括左室射血分数(EF%)、左室舒张期前壁厚度、左室收缩期前壁厚度、左室舒张期内径(n=48)。

1.4 HE染色鉴定模型

3%戊巴比妥钠腹腔注射(50 mg/kg)麻醉,迅速正中开胸去除心脏、肺脏、肾脏PBS冲洗后,用4%多聚甲醛固定,石蜡包埋进行常规HE染色观察各脏器变化(n=6)。

1.5 免疫组化

用SABC法对心肌组织行PECAM-1,α-SAM表达检测。3 μm 石蜡切片脱蜡,根据试剂盒步骤进行封闭,分别加羊抗鼠PECAM-1单克隆抗体(1∶ 250),小鼠抗小鼠α -SAM单克隆抗体(1∶ 200),37 ℃孵育2 h,加辣根过氧化物酶标记的羊抗羊IgG,37 ℃孵育30 min,滴加SABC,37 ℃孵育30 min,滴加DAB 显色液,苏木素复染,常规脱水,透明,封片。

1.6 RT-PCR

用Real-time PCR检测,引物序列[7]:HIF-1α上游:5′ -AGCCCTAGATGGCTTTGTGA-3′ 下游:5′ - TATCGAGGCTGTGTCGACTG-3′ ; VEGF上游:5′ -CTGCTCTCTTGGGTCCACTGG-3′ 下游:5′ -CACCGCCTTGGCTTGTCACAT-3′ ; BAX上游5′ -CCCAAGCTTGCCTTGAGCACCAGTTTGC-3下游5′ -TGCTCTAGAGGATGATTGCCGCCGTGGAC-3′ ;BCL-2上游5′ -AGTTCGGTGGGGTCATGTGTG-3′ 下游5′ -CCAGGTATGCACCCAGAGTG-3′ ;按照试剂盒方法合成CDNA,PCR 反应条件:95 ℃ 10 min,95 ℃,30 s,60 ℃ 20 s,72 ℃ 40 s,循环数35 次。

1.7 蛋白测定

采用ELISA法,按照试剂盒步骤,将标准稀释相应倍,制备标准曲线,上样,室温孵育2 h,缓冲液洗板5次,加一抗工作液,室温孵育1 h,洗板5次,加酶标抗体,室温孵育1 h,洗板5次,加底物避光室温孵育10 min,显色,加终止液,酶标仪上判读结果。

1.8 心脏组织蛋白表达测定

采用Western blotting测定心脏组织蛋白表达。用细胞裂解液将小鼠心脏组织匀浆、静置30 min,离心取上清,测蛋白浓度,取蛋白进行聚丙烯酰胺凝胶电泳转移至聚偏氟乙烯膜上,脱脂奶粉封闭1 h,加兔抗体,用TBST洗膜,加抗兔含辣根过氧化物酶IgG抗体,加HRP-抗生物素抗体孵育。TBST洗膜后加化学发光试剂,应用Alpha-Ease-FC系统进行自动显影,采用软件分析所得条带。

1.9 统计学方法

各组数据采用均数±标准差(x±s)方法表示,应用 SPSS 20.0 统计软件进行数据分析处理,两组间均数比较用t检验;多组间采用one-way ANOVA比较,以P<0.05为差异具有统计学意义。

2 结果

2.1 心功能障碍

与对照组相比,实验组各组SV、EF%明显减低(P<0.05),左室舒张期前壁厚度、左室收缩期前壁厚度、左室舒张期内径明显增加(P<0.05)(图 1表 1)。

图 1对照组和LPS处理小鼠心脏超声(M-mode横轴) Fig 1 The cardiac function of sham group and LPS groups(M-mode,parasternal short-axis)measured by echocardiography

表 1 对照组和LPS处理组小鼠的心脏彩超数值 Table 1 Echocardiographic data in LPS groups and sham group
,
组别左室射血分数(%)每搏输出量左室舒张期前壁厚度左室收缩期前壁厚度左心室舒张期内径
Sham71.40±5.7145.00±10.200.71±0.031.14±0.112.90±3.30
LPS 6 h42.95±7.23a25.31±11.06a0.95±0.15a1.31±0.22a3.27±0.79a
LPS 12 h32.31±8.13a22.41±12.02a1.06±0.09a1.22±0.14a3.88±0.88a
LPS 24 h25.13±6.12a26.21±9.02a1.13±0.21a1.31±0.22a3.45±0.44a
    注:与对照组比较,aP<0.05
2.2 小鼠脓毒症模型鉴定

经过预实验及查阅文献证实建模方法可靠,48 h病死率可达60%以上,结果示实验组各组织镜下可见心肌小血管周围大量炎性细胞浸润,细胞间质水肿;肾间质内可见大量白细胞浸润,肾小球毛细血管充血;肺脏可见大量炎性细胞浸润、肺泡腔部分融合为肺大泡[8, 9, 10, 11]

2.3 HE染色观察、TUNEL染色观察

通过HE染色,与对照组相比,处理组心肌血管周围大量炎性细胞浸润、细胞间质水肿(图 2)。TUNEL法检测凋亡指数实验组各组和对照组分别为(171.21±6.21)(6 h)、(182.52±3.46)(12 h)、(191.31±5.41)(24 h)和(52.24±4.32),差异具有统计学意义。这说明实验组心肌存在凋亡改变并且凋亡细胞不断增加。

TUNEL阳性细胞核着棕色;每个样本6个视野下(每个视野大约有800个细胞核)计数,并计算TUNEL阳性细胞数占总细胞数的百分比(n=8) 图 2 小鼠心脏组织HE染色及TUNEL凋亡染色结果(×200) Fig 2 Photomicrographs of HE staining and TUNEL apoptosis staining in mice heart (×200)
2.4 免疫组化观察

通过PECAM-1、α-SMA免疫组化染色(×200)观察心脏血管再生情况。处理组各组PECAM-1蛋白表达阳性染色的血管数目分别为LPS 6 h(24.9±8.8)、LPS 12 h(28.2±7.1)、LPS 24 h(26.7±6.3),与对照组(3.4±1.6)比较,差异具有统计学意义(P<0.01)。各处理组α-SMA蛋白表达阳性染色的血管数目分别为LPS 6 h(14.83±3.49)、LPS 12 h(17.44±6.15)、LPS 24 h(18.32±6.35),与对照组(2.50±1.15)比较,差异具有统计学意义(P<0.05)(图 3)。

图 3 LPS处理组和对照组小鼠心脏组织切片PECAM-1和α-SMA表达免疫组化检测(×200) Fig 3 The PECAM-1 and α-SMA immunohistochemical staining in heart sections in LPS administrated groups and control group(×200)
2.5 ELISA法测定小鼠心脏组织中IL-6、TNF-α、VEGF、HIF-1α蛋白水平

处理组各个时间点的IL-6、TNF-α、HIF-1α、VEGF蛋白水平均高于对照组,差异具有统计学意义 (P<0.05)(图 4)。

与对照组比较,aP<0.05 图 4 ELISA法测定心脏组织IL-6、TNF-α、VEGF、HIF-1α蛋白水平 Fig 4 The protein level of IL-6, TNF-α, VEGF, and HIF-1α in the heart of mice by ELISA
2.6 RT-PCR结果

通过RT-PCR法检测发现LPS处理组与对照组心肌组织中HIF-1α、VEGF、BAX基因表达显著上调,BCL-2基因表达显著下调(P<0.05),各组 GAPDH 基因表达差异无统计学意义(图 5)。

与对照组比较,aP<0.05 图 5 RT-PCR法检测心肌组织VEGF、HIF-1α、BAX、BCL-2的表达情况 Fig 5 RT-PCR analysis of the mRNA levels of VEGF, HIF-1α, BAX, and BCL-2
2.7 Western blot结果

Western blot结果显示,LPS处理组心脏组织HIF-1α、p53蛋白表达水平明显高于对照组,且HIF-1α表达水平于建模后24 h达到高峰,而p53表达水平也显著增加,与对照组比较差异具有统计学意义(P<0.05)。见图 6

与对照组比较,aP<0.05 图 6 Western blot方法检测心脏组织HIF-1α、p53表达 Fig 6 The expression of HIF-1α and p53 of the heart tissue determined by Western blot
3 讨论

脓毒症可引起循环功能障碍,最终导致多器官功能衰竭。目前已知心肌损伤机制包括细胞因子、氧自由基等内源性因素直接作用于心肌细胞[12];心肌细胞内脂质聚集、乳酸摄取增加,缺氧导致器官功能不全[13, 14];心肌肾素-血管紧张素(RAS)系统激活及白细胞介素(IL-1、IL-6)、肿瘤坏死因子 (TNF-α)等因子参与[15]。本研究发现,脓毒症小鼠早期即可发生心功能恶化,且随炎症因子表达水平增加而恶化,验证了脓毒症所致心功能障碍与炎症反应严重程度相关。

VEGF是血管形成和增加血管通透性诱导因子,可促进炎症细胞释放炎症介质[16],进而加重宿主的炎症反应[17]。本实验中实验组心脏组织VEGF表达显著升高,TNF-α和IL-6峰值在6 h左右,且TNF-α、IL-6峰值之后会伴随着VEGF增高,提示VEGF有作为脓毒症早期标志物的潜在价值[18]。研究同时发现脓毒症模型随时间推移,新生血管数量明显增加,结果符合脓毒症过程中心肌缺血缺氧的病理生理过程,机体可能通过增加毛细血管数来改善心肌氧供[19]。低氧诱导因子(HIF-1α)在应激条件下可通过迁移促进血管再生因子VEGF等相关蛋白的翻译,促进血管再生[7]。本实验观察到,实验组心脏组织内HIF-1α蛋白表达水平随时间推移逐渐升高(图 6),这提示HIF-1α可能参与了脓毒症心肌损伤中的病理生理过程。本研究同时发现心脏组织中细胞凋亡基因BAX表达增高,抑凋亡基因BCL-2表达降低,验证了脓毒症心肌损伤中存在细胞凋亡相关信号通路的激活。研究表明,p53可参与细胞凋亡的启动并诱导细胞凋亡。在高血压心肌肥厚动物模型中,p53可通过结合HIF-1α使其降解成无活性产物,从而抑制血管再生的信号通路,加速心衰的过程[7, 14]。本研究结果显示脓毒症模型组小鼠心脏组织p53表达逐渐增高,表明p53信号通路同样参与了脓毒症心肌损伤过程。

本实验说明脓毒症小鼠心脏存在心功能障碍、血管新生及细胞凋亡现象;提出VEGF可作为脓毒症进展早期生物标志物的假设;证明了p53基因表达增高可能参与其中。这为今后脓毒症心功能障碍的诊治提供了理论基础[20]

参考文献
[1] Chong J, Dumont T, Francis-Frank L, et al. Sepsis and septic shock:Areview[J]. Crit Care Nurs Q, 2015, 38 (2): 111-120.
[2] Drosatos K, Lymperopoulos A, Kennel PJ, et al. Pathophysiology of sepsis-related cardiac dysfunction: Driven by inflammation, energy mismanagement, or both? [J]. Curr Heart Fail Rep, 2015, 12 (2): 130-140.
[3] Kalbitz M, Grailer JJ, Fattahi F, et al. Role of extracellular histones in the cardiomyopathy of sepsis[J]. FASEB J,2015,29(5):2185-2193.
[4] Gamkrelidze M, Intskirveli N, Vardosanidze K, et al. Myocardial dysfunction during septic shock (review) [J]. Georgian Med News, 2014, (237): 40-46.
[5] Schmidt D, Textor B, Pein OT, et al. Critical role for NF-kappa B-induced JunB in VEGF regulation and tumor angiogenesis[J]. EMBO J,2007,26 (3): 710-719.
[6] Walley KR. Deeper understanding of mechanisms contributing to sepsis-induced myocardial dysfunction[J]. Crit Care, 2014,18 (3): 137.
[7] Sano M, Minamino T, Toko H, et al. P53-induced inhibition of hif-1 causes cardiac dysfunction during pressure overload[J]. Nature,2007,446 (7134): 444-448.
[8] Meng F, Meliton A, Moldobaeva N, et al. Asef mediates hgf protective effects against lps-induced lung injury and endothelial barrier dysfunction[J]. AmJPhysiol Lung Cell Mol Physiol,2015,308 (5): L452-463.
[9] Kusano T, Chiang KC, Inomata M, et al.Anovel anti-histone h1 monoclonal antibody, ssv monoclonal antibody, improves lung injury and survival inamouse model of lipopolysaccharide-induced sepsis-like syndrome[J]. Biomed Res Int, 2015,2015: 491649.
[10] Reho JJ, Zheng X, Asico LD. Redox signaling and splicing dependent change in myosin phosphatase underlie early versus late changes in no vasodilator reserve inamouse lps model of sepsis[J]. AmJPhysiol Heart Circ Physiol,2015,308(9):H1039-1050.
[11] Tanaka KA, Kurihara S, Shibakusa T, et al. Cystine improves survival rates inalps-induced sepsis mouse model[J]. Clin Nutr,2014,pii: S0261-5614(14)00296-9.
[12] Schuetz P, Christ-Crain M, Morgenthaler NG, et al. Circulating precursor levels of endothelin-1 and adrenomedullin, two endothelium-derived, counteracting substances, in sepsis[J]. Endothelium,2007,14(6):345-351.
[13] 曾皋,郭树彬.脂钙蛋白2检测识别脓毒症小鼠急性肺损伤[J]. 中华急诊医学杂志,2015,24(2):155-159.
[14] Buerke U, Carter JM, Schlitt A, et al. Apoptosis contributes to septic cardiomyopathy and is improved by simvastatin therapy[J]. Shock,2008,29(4):497-503.
[15] Jozwiak M, Persichini R, Monnet X, et al. Management of myocardial dysfunction in severe sepsis[J]. Semin Respir Crit Care Med, 2011,32(2):206-214.
[16] Yano K, Liaw PC, Mullington JM, et al. Vascular endothelial growth factor is an important determinant of sepsis morbidity and mortality[J].JExp Med, 2006,203(6):1447-1458.
[17] Jeong SJ, Han SH, Kim CO, et al. Anti-vascular endothelial growth factor antibody attenuates inflammation and decreases mortality in an experimental model of severe sepsis[J]. Crit Care, 2013,17(3):R97.
[18] Yano K, Okada Y, Beldi G, et al. Elevated levels of placental growth factor represent an adaptive host response in sepsis[J].JExp Med,2008,205(11):2623-2631.
[19] Kamba T, McDonald DM. Mechanisms of adverse effects of anti-vegf therapy for cancer[J]. BrJCancer,2007,96(12):1788-1795.
[20] 于学忠,朱华栋. 重症感染的诊疗进展[J]. 中华急诊医学杂志,2011,20 (3):232-234.