急性脊髓损伤 (acute spinal cord injury,ASCI) 是临床上常见的一种损伤类型,具有高致残率与致死率的特征。ASCI好发于中青年男性 (21~69岁),其中学生、农民、工人为高危人群,主要病因包括高处坠落 (约41%)、交通事故 (37.8%)、高空坠物、斗殴、运动损伤等[1]。在美国,近二十年来全国ASCI的发病率从61.1/10万上升至75.5/10万,其中颈椎损伤发病率增至原来的3倍[2]。虽然脊髓损伤早期的诊治处理一定程度上可以较好地挽救患者的功能,但对于严重的脊髓损伤,目前临床上尚缺乏切实有效地救治手段[3]。近年来在脊髓损伤的诊治理念上发生了较为明显的变化,本文就此方面做一综述。
1 临床治疗进展 1.1 手术治疗急诊减压手术是椎管、脊髓压迫症导致的ASCI的首选治疗手段,手术目的为彻底除去脊髓致压物以挽救脊髓功能[4]。脊髓压力监测 (ISP) 可准确反映硬脊膜压力,ISP越高,ASCI患者预后越差[5-6]。手术除骨性减压外,常需打开硬脊膜,行硬膜减张、缓解硬膜囊压力,达到真正意义上的脊髓减压[5]。此外,对于脊髓挫伤严重、肿胀明显,近年来也强调早期脊髓内病灶清除减压以避免继发性损伤,最大限度挽救功能。但该术式对坏死脊髓组织边界,病灶清除范围需要进行准确的判断,对于临床医生的操作要求较高[7]。
在手术时机上,有研究表明患者伤后24 h内进行减压手术较24 h后有明显的预后改善[8-9]。Biglari等进一步发现,创伤后4 h内进行减压手术的SCI患者与4-24 h内的相比神经功能改善并无统计学意义,提示最佳治疗时间至少为4 h[10]。其后,Burke等[11]则认为12 h内手术具有明显的神经功能恢复,12~24 h与24 h之后进行手术预后并无明显差异,Lukas等[12]则进一步把时间点提前至8 h。在安全性评价中,Bliemel等[13]就24 974例患者分析发现早期手术 (72 h内) 患者可显著缩短平均住院时间和ICU滞留时间,减少机械通气天数,降低败血症发生率。另外,早期手术 (<24 h) 亦可降低肺炎和尿路感染的发生率,
少医疗成本,使医疗资源配置更优化[14]。除此之外,个体化治疗亦成为关注焦点,不同损伤程度或类型的患者需进行不同手术时机的选择。Bliemel等[13]提出多发伤患者可适当延迟手术,同样,如合并重型颅脑损伤等这类需要生命体征支持和插管的重症患者也应延缓手术。虽然众多证据表明早期减压手术可改善ASCI患者的神经功能恢复,减少术后并发症。但考虑到上述研究大部分都是小样本,存在异质性,缺乏一级证据,所以需要更大的临床随机试验进行探究与验证,并且手术治疗时间窗的选择在未来应趋于个体化。
1.2 非手术治疗 1.2.1 糖皮质激素甲基强的松龙 (methylprednisolone,MP) 是ASCI早期治疗的经典药物,同时,由于其严重的并发症,MP也备受争议。
1979年美国急性脊髓损伤研究会 (NASCIS) 结果表明MP治疗组较安慰剂组具有明显的治疗效果,将MP冲击疗法被推向高峰[15-16]。为探究治疗持续时间问题,1985年NASCIS进行了第三次临床试验,该试验建议ASCI后3 h内MP治疗持续24 h,而伤后3~8 h给药应持续48 h[17]。
这3次临床试验由于评价指标设置及样本代表性问题一直饱受质疑[18]。目前比较一致的观点是,大剂量MP冲击疗法并不能降低ASCI患者的病死率,却大大增加了出血、败血症、肺炎、尿路感染、肺栓塞等并发症的发生率[19-21]。2013年,美国神经外科医师协会 (AANS) 和神经外科医师大会 (CNS) 发布的共识中提到将不再推荐应用糖皮质激素。美国急诊医学协会则持中立态度,他们认为MP疗法虽然不是一种标准疗法,但也是一种可以接受的治疗选择[22]。
1.2.2 其他药物神经节苷脂 (GM-1) 曾一度被认为可取代糖皮质激素,成为治疗ASCI的主力军。1991年,对照实验首次证实GM-1的神经恢复功能[23]。然而在此基础上,多中心Sygen试验虽然证明GM-1治疗患者存在促进神经功能恢复的趋势,但和对照组差异无统计学意义,故美国和欧洲等众多机构并不推荐GM-1首选于ASCI的治疗[24]。另外,利鲁唑,米诺环素、促轴突生长剂Cethrin BA-210正处于大型临床试验中[25]。
中药提取物如黄素、白藜芦醇、儿茶素、川芎嗪、槲皮苷、银杏内酯等具有显著的抗炎、抗氧化、抗凋亡和神经保护的作用[26-27]。丹参可促进血液循环,增加脊髓损伤组织的血流量,抑制血栓形成,改善脊髓微循环[28]。
1.2.3 干细胞移植干细胞移植是ASCI治疗的研究热点,其中骨髓间充质干细胞 (BMSCs) 在临床上研究较为普遍[29]。目前研究建议BMSCs移植治疗SCI的最佳时机在1周左右,移植最常规的方法是直接注射到脊髓,虽然这种方法能精准定位,但也存在从穿刺部位泄露的缺点,静脉注射是一种简单、安全的移植路径,但其他器官的细胞捕获和免疫反应机会较高。一期临床试验证明了BMSCs移植在慢性脊髓损伤的治疗中安全、可行,并能促进神经的改善[30]。
1.2.4 高压氧与亚低温治疗高压氧治疗能明显抑制继发性损伤,改善预后,延长ASCI的治疗时间窗,并且连续的高压氧治疗 (每日一次持续一周) 较单次具有更佳的神经恢复效果[31]。亚低温治疗是近年新起的脊髓损伤辅助治疗方法[32],其中,适度低温 (32~34 ℃) 是ASCI后的最优冷却策略。地塞米松和戊巴比妥联合亚低温治疗取得了较为显著的治疗效果,对于如上述的组合疗法的研究也可成为未来的研究重点[33]。
2 结论与展望当前,针对急性脊髓损伤的治疗手段仍较为,虽然大剂量糖皮质激素冲击疗法受到普遍质疑,但在没有权威证据证明其无效的情况下亦可使用,剂量上因其严重的并发症可进行适当减量调整。当然,对于新型药物和疗法的开发亦至关重要,目前治疗的趋势可从脊髓微环境恢复和神经再生两方面着手。在ASCI早期,应以恢复脊髓微环境,抑制继发性损伤为主,用药强调早期、适量、联合治疗,利用分子生物技术靶向精准用药,减少药物用量、其他脏器细胞的摄取损伤,提高药物效果。早期手术、高压氧和亚低温疗法对脊髓微环境的恢复也存在重要的意义,对于上述方式的治疗窗和治疗具体方案亦可进一步研究探讨。当脊髓微环境恢复至利于神经元和轴突再生时,可利用干细胞移植等方法重建神经环路,恢复运动功能,也可运用各种神经营养因子促进神经的再生。但是如今还存在几大关键问题:移植的干细胞能否存活;轴突再生和走向是否正确;能否建立有功能的突触联系;能否与原有正常神经建立正确的神经环路。目前生物材料的开发有助于干细胞移植的成功率。
[1] | Yang R, Guo L, Huang L, et al. Epidemiological Characteristics of Traumatic Spinal Cord Injury in Guangdong, China[J]. Spine, 2016. DOI:10.1097/brs.0000000000001896 |
[2] | Ghobrial GM, Ament PS, Maltenfor M, et al. Longitudinal incidence and concurrence rates for traumatic brain injury and spine injury-a twenty year analysis[J]. Clin Neurol Neurosurg, 2014, 123(C): 174-180. DOI:10.1016/j.clineuro.2014.05.013 |
[3] | 申福国, 孔维丽, 刘士臣, 等. 大鼠脊髓损伤后对巢蛋白及突触素Ⅰ表达的影响[J]. 中华急诊医学杂志, 2014, 23(12): 1348-1354. DOI:10.3760/cma.j.issn.1671-0282.2014.12.011 |
[4] | 朱晓光, 杨开超, 仲伟喜, 等. 急性创伤性脊髓损伤患者深静脉血栓形成的危险因素分析[J]. 中华急诊医学杂志, 2015, 24(8): 878-881. |
[5] | Saadon S, Papadopoulos MC. Spinal cord injury: is monitoring from the injury site the future?[J]. Crit Care, 2016, 20(3): 08. DOI:10.1186/s13054-016-1490-3 |
[6] | Werndle MC, Saadoun S, Phang I, et al. Monitoring of spinal cord perfusion pressure in acute spinal cord injury: initial findings of the injured spinal cord pressure evaluation study[J]. Crit Care Med, 2014, 42(3): 646-655. DOI:10.1097/ccm.0000000000000028 |
[7] | 魏梁锋. 颈椎后路椎板切除脊髓内减压术治疗急性创伤性颈髓损伤[J]. 中华神经创伤外科电子杂志, 2016, 2(3): 191-192. DOI:10.3877/cma.j.issn.2095-9141.2016.03.018 |
[8] | Liu Y, Shi CG, Wang XW, et al. Timing of surgical decompression for traumatic cervical spinal cord injury[J]. Intern Orth, 2015, 39(12): 2457-2463. DOI:10.1007/s00264-014-2652-z |
[9] | Fehlings MG, Vaccaro A, Wilson JR, et al. Early versus delayed decompression for traumatic cervical spinal cord injury: results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS)[J]. PLoS One, 2012, 7(2): e32037. DOI:10.1371/journal.pone.0032037 |
[10] | Biglari B, Child DC, Yildirim TM, et al. Does surgical treatment within 4 hours after trauma have an influence on neurological remission in patients with acute spinal cord injury?[J]. Ther Clin Risk Manag, 2016, 12(1): 339-346. DOI:10.2147/TCRM.S108856 |
[11] | Burke JF, Yue JK, Ngwenya LB, et al. 182 Ultra-Early ( < 12 Hours) Decompression Improves Recovery After Spinal Cord Injury Compared to Early (12-24 Hours) Decompression[J]. Neurosurgery, 2016, 63(Suppl 1): (1):72. DOI:10.1227/01.neu.0000489751.59414.45 |
[12] | Grassner L, Wutte EC, Klein B, et al. Early decompression ( < 8 h) after traumatic cervical spinal cord injury improves functional outcome as assessed by spinal cord independence measure after one year[J]. J Neurotrauma, 2016, 33(18): 1658-1666. DOI:10.1089/neu.2015.4325 |
[13] | Bliemel C, Lefering R, Buecking B, et al. Early or delayed stabilization in severely injured patients with spinal fractures Current surgical objectivity according to the Trauma Registry of DGU: treatment of spine injuries in polytrauma patients[J]. J Trauma Acute Care Surg, 2014, 76(2): 366-373. DOI:10.1097/TA.0b013e3182aafd7a |
[14] | Bourassa-Moreau E, Mac-Thiong JM, Feldman DE, et al. Non-neurological outcomes after complete traumatic spinal cord injury: the impact of surgical timing[J]. J Neurotrauma, 2013, 30(18): 1596-1601. DOI:10.1089/neu.2013.2957 |
[15] | Bracken MB, Collins WF, Freeman DF, et al. Efficacy of methylprednisolone in acute spinal cord injury[J]. JAMA, 1984, 251(1): 45-52. DOI:10.1001/jama.1984.03340250025015 |
[16] | Bracken MB, Shepard MJ, Collins W F, et al. A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury[J]. New Engl J Med, 1990, 322(20): 1405-1411. DOI:10.1056/NEJM199005173222001 |
[17] | Bracken MB, Shepard MJ, Holford TR, et al. Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study[J]. JAMA, 1997, 277(20): 1597-1604. DOI:10.1001/jama.1997.03540440031029 |
[18] | Sayer FT, Kronvall E, Nilsson OG. Methylprednisolone treatment in acute spinal cord injury: the myth challenged through a structured analysis of published literature[J]. Spine, 2006, 6(3): 335-343. DOI:10.1016/j.spinee.2005.11.001 |
[19] | Chikuda H, Yasunaga H, Takeshita K, et al. Mortality and morbidity after high-dose methylprednisolone treatment in patients with acute cervical spinal cord injury: a propensity-matched analysis using a nationwide administrative database[J]. Emerg Med, 2014, 31(3): 201-206. DOI:10.1136/emermed-2012-202058 |
[20] | Sun WP, Yuan GX, Hu YJ, et al. Effect of low-dose glucocorticoid on corticosteroid insufficient patients with acute exacerbation of chronic obstructive pulmonary disease[J]. World J Emerg Med, 2015, 6(1): 34-39. DOI:10.5847/wjem.j.1920-8642.2015.01.006 |
[21] | Liu ZH, Zhang XR, Hu XY, et al. Effect of glucocorticoid on MIP-1α and NF-κB expressing in the lung of rats undergoing mechanical ventilation with a high tidal volume[J]. World J Emerg Med, 2011, 2(1): 66-69. DOI:10.5847/wjem.j.1920-8642.2011.01.012 |
[22] | Bowers CA, Kundu B, Hawrylukg WJ. Methylprednisolone for acute spinal cord injury: an increasingly philosophical debate[J]. Neural Regen Res, 2016, 11(6): 882-885. DOI:10.4103/1673-5374.184450 |
[23] | Geisler FH, Dorsey FC, Coleman WP. Recovery of motor function after spinal-cord injury--a randomized, placebo-controlled trial with GM-1 ganglioside[J]. N Engl J Med, 1991, 324(26): 1829-1838. DOI:10.1056/NEJM199106273242601 |
[24] | Lammertse DP. Clinical trials in spinal cord injury: lessons learned on the path to translation. The 2011 International Spinal Cord Society Sir Ludwig Guttmann Lecture[J]. Spinal Cord, 2012, 51(1): 2-9. DOI:10.1038/sc.2012.137 |
[25] | Thibault-Halman G, Rivers CS, Bailey C, et al. Predicting recruitment feasibility for acute spinal cord injury clinical trials in Canada using national registry data[J]. J Neurotrauma, 2016. DOI:10.1089/neu.2016.4568 |
[26] | Song Y, Zeng Z, Jin C, et al. Protective effect of ginkgolide B against acute spinal cord injury in rats and its correlation with the Jak/STAT signaling pathway[J]. Neuroch Res, 2013, 38(3): 610-619. DOI:10.1007/s11064-012-0959-y |
[27] | Ning N, Dang X, Bai C, et al. Panax notoginsenoside produces neuroprotective effects in rat model of acute spinal cord ischemia-reperfusion injury[J]. J Ethnopharmacol, 2012, 139(2): 504-512. DOI:10.1016/j.jep.2011.11.040 |
[28] | Zhang Q, Yang H, An J, et al. Therapeutic effects of traditional chinese medicine on spinal cord injury: a promising supplementary treatment in future[J]. Evid Based Complement Alternat Med, 2016, 2016(24): 1-18. DOI:10.1155/2016/8958721 |
[29] | Dasari VR, Veeravalli KK, Dinh DH. Mesenchymal stem cells in the treatment of spinal cord injuries: A review[J]. World J Stem Cells, 2014, 6(2): 120-133. DOI:10.4252/wjsc.v6.i2.120 |
[30] | Mendonca MV, Larocca TF, De Freitas Souza BS, et al. Safety and neurological assessments after autologous transplantation of bone marrow mesenchymal stem cells in subjects with chronic spinal cord injury[J]. Stem Cell Res Ther, 2014, 5(6): 126. DOI:10.1186/scrt516 |
[31] | Huang L, Mehta MP, Eichhorn JH, et al. Multiple hyperbaric oxygenation (HBO) expands the therapeutic window in acute spinal cord injury in rats[J]. Acta Neurochir Suppl, 2003, 8(6): 433-438. |
[32] | Zhu P, Zhao MY, Li XH, et al. Effect of low temperatures on BAX and BCL2 proteins in rats with spinal cord ischemia reperfusion injury[J]. Genet Mol Res, 2015, 14(3): 10490-10499. DOI:10.4238/2015.September.8.10 |
[33] | Tetik O, Islamoglu F, Goncu T, et al. Reduction of spinal cord injury with pentobarbital and hypothermia in a rabbit model[J]. Eur J Vasc Endovasc Surg, 2002, 24(6): 540-544. DOI:10.1053/ejvs.2002.1753 |