中华急诊医学杂志  2019, Vol. 28 Issue (8): 978-982   DOI: 10.3760/cma.j.issn.1671-0282.2019.08.012
激活大麻素2型受体在LPS诱导的RAW264.7巨噬细胞炎症因子分泌中的作用及其可能机制
袁清红 , 刘安鹏 , 刘强胜 , 郑菲 , 张宗泽 , 王焱林 , 詹佳     
武汉大学中南医院麻醉科,430071
摘要: 目的 探讨激活大麻素2型受体(Cannabinoid receptor 2,CB2R)在脂多糖(lipopolysaccharide,LPS)诱导的RAW264.7巨噬细胞炎症因子分泌中的作用及其可能机制。方法 将巨噬细胞以1×105/mL的密度接种于6孔培养板(2 mL/孔),采用随机数字表法将其分为4组(n=6):对照组(C组)、LPS组(LPS组)、LPS+CB2R激动剂HU308组(LPS+HU308组)、LPS+CB2R激动剂HU308+3-甲基腺苷组(LPS+HU308+3-MA组)。LPS组、LPS+HU308组和LPS+HU308+3-MA组加入终浓度为1 μg/mL的LPS,孵育15 min时,LPS+HU308+3-MA组加入终浓度为10 mmol/L的3-MA,继续孵育15 min,LPS+HU308组和LPS+HU308+3-MA组加入终浓度为10 μmol/L的HU308孵育24 h。采用ELISA法检测各组细胞上清液中TNF-α、IL-1β和IL-18的浓度;采用RT-PCR法检测ICAM-1和NLRP3 mRNA的表达水平,采用western blot法检测LC3和Beclin1的表达水平,并计算LC3-Ⅱ/LC3-Ⅰ比值。结果 与C组比较,LPS组TNF-α[(228.86±10.20) pg/mL vs (140.05±5.54) pg/mL、IL-1β[(363.62±8.14) pg/mL vs (244.82±9.11) pg/mL]和IL-18[(293.28±13.57) pg/mL vs. (202.84±9.54) pg/mL]的浓度升高(均P<0.05),ICAM-1[(5.88±0.32) vs. (1.00±0.03)]和NLRP3[(8.07±0.93) vs. (1.01±0.05)] mRNA表达升高(均P<0.05),LC3-Ⅱ/LC3-Ⅰ比值[(0.50±0.03) vs. (0.40±0.06)]和Beclin1[(0.51±0.04) vs. (0.16±0.03)]表达上调(均P<0.05);与LPS组比较,LPS+HU308组TNF-α[(165.44±7.07) pg/mL]、IL-1β[(272.09±3.35) pg/mL]和IL-18[(220.41±6.01) pg/mL]的浓度降低(均P<0.05),ICAM-1[(3.21±0.35)]和NLRP3[(1.54±0.30)] mRNA表达降低(均P<0.05),LC3-Ⅱ/LC3-Ⅰ比值[(0.71±0.03)]和Beclin1[(0.71±0.02)]表达上调(均P<0.05);与LPS+HU308组比较,LPS+HU308+3-MA组TNF-α[(197.06±5.59) pg/mL]、IL-1β[(318.98±11.54) pg/mL]和IL-18[(243.33±8.71) pg/mL]的浓度升高(均P<0.05),ICAM-1[(4.04±0.21)]和NLRP3 [(5.87±0.77)] mRNA表达升高(均P<0.05),LC3-Ⅱ/LC3-Ⅰ比值[(0.44±0.08)]和Beclin1[(0.32±0.03)]表达下调(均P<0.05)。结论 激活大麻素2型受体可抑制脂多糖诱导的RAW264.7巨噬细胞炎症因子分泌,其作用机制可能与增强自噬有关。
关键词: 大麻素2型受体    LPS    炎症因子    分泌    免疫调节    RAW264.7    巨噬细胞    自噬    NLRP3    
Role of activated cannabinoid receptor 2 in lipopolysaccharide-induced secretion of RAW264.7 macrophage inflammatory cytokines and its possible mechanism
Yuan Qinghong , Liu Anpeng , Liu Qiangsheng , Zheng Fei , Wang Yanlin , Zhang Zongze , Zhan Jia     
Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
Abstract: Objective To investigate the role of activated cannabinoid receptor 2 (CB2R) in lipopolysaccharide (LPS)-induced secretion of RAW264.7 macrophage inflammatory cytokines and its possible mechanism. Methods Macrophages were seeded in 6-well plates (2 mL/well) at the density of 1×105 cells/mL and randomly divided into four groups (n=6 each group): control group (group C), LPS group (group LPS), LPS plus CB2R agonist HU308 group (group LPS+HU308), and LPS plus HU308 plus 3-Methyladenine group (group LPS+HU308+3-MA). LPS with the final concentration of 1 μg/mL were added in group LPS, group LPS+HU308 and group LPS+HU308+3-MA. After incubation for 15 min, 3-MA with a final concentration of 10 mmol/L was added into group LPS+HU308+3-MA. HU308 with the final concentration of 10 μmol/L was added in group LPS+HU308 and group LPS+HU308+3-MA at 15 min after 3-MA intervention, and the cells were then incubated for 24 h. The concentrations of TNF-α, IL-18 and IL-1β in supernatant serum of each group were determined by ELISA. The expressions of ICAM-1 and NLRP3 mRNA were detected by RT-PCR. The expressions of LC3 and Beclin1 were detected by Western blot, and the ratio of LC3-Ⅱ/LC3-Ⅰ was calculated. LSD-t test was used for sample pairwise comparison, and one way ANOVA for inter-group comparison. A P < 0.05 was considered statistically significant. Results Compared with group C, the concentrations of TNF-α [(228.86±10.20) pg/mL vs (140.05±5.54) pg/mL], IL-1β [(363.62±8.14) pg/mL vs (244.82±9.11) pg/mL], and IL-18 [(293.28±13.57) pg/mL vs (202.84±9.54) pg/mL] in supernatant serum were increased (all P < 0.05), the expressions of ICAM-1 [(5.88±0.32) vs (1.00±0.03)] and NLRP3 [(8.07±0.93) vs (1.01±0.05)] mRNA were increased (all P < 0.05), the expressions of LC3-Ⅱ/LC3-Ⅰ ratio [(0.50±0.03) vs (0.40±0.06)] and Beclin1 [(0.51±0.04) vs (0.16±0.03)] were up-regulated in group LPS (all P < 0.05). Compared with group LPS, the concentrations of TNF-α [(165.44±7.07) pg/mL], IL-1β [(272.09±3.35) pg/mL] and IL-18 [(220.41±6.01) pg/mL] in supernatant serum were significantly decreased (all P < 0.05), the expressions of ICAM-1 [(3.21±0.35)] and NLRP3 [(1.54±0.30)] mRNA were decreased (all P < 0.05), the expressions of LC3-Ⅱ/LC3-Ⅰ ratio [(0.71±0.03)] and Beclin1 [(0.71±0.02)] were up-regulated in group LPS+HU308 (all P < 0.05). Compared with group LPS+HU308, the concentrations of TNF-α [(197.06±5.59) pg/mL], IL-1β [(318.98±11.54) pg/mL] and IL-18 [(243.33±8.71) pg/mL] in supernatant serum were significantly increased (all P < 0.05), the expressions of ICAM-1 [(4.04±0.21)] and NLRP3 [(5.87±0.77)] mRNA were increased (all P < 0.05), the expressions of LC3-Ⅱ/LC3-Ⅰ ratio [(0.44±0.08)] and Beclin1 [(0.32±0.03)] were down-regulated in group LPS+HU308+3-MA (all P < 0.05). Conclusions Activation of cannabinoid receptor 2 can alleviate LPS-induced the secretion of RAW264.7 macrophage inflammatory cytokines, and its mechanism may be related to enhanced autophagy.
Key words: Cannabinoid receptor 2    LPS    Inflammatory cytokines    Secretion    Immunoregulation    Raw264.7    Macrophage    Autophagy    NLRP3    

脓毒症是机体对感染反应失调引起的危及生命的器官功能障碍[1]。脓毒症是一种全身炎症性疾病,其本质是促炎和抗炎反应失衡,导致过度性、失控性炎症反应[2],病原体或其产物脂多糖(lipopolysaccharide,LPS)在这一过程中发挥重要作用。大麻素2型受体(cannabinoid receptor 2,CB2R)属于G蛋白偶联受体,主要表达在免疫细胞中[3]。研究表明,激活CB2R具有抗炎和免疫抑制作用[4]。CB2R激动剂作为抗炎药物在治疗多种疾病,如帕金森病、肠道疾病和心血管疾病中具有潜在的应用价值[5-7]。这些研究发现使CB2R进一步成为脓毒症治疗的新靶点,为脓毒症治疗带来新希望。自噬是进化中高度保守的细胞内降解过程,自噬通过清除病原体、控制炎症和调节免疫介质分泌参与免疫调节过程[8-9]。本研究拟探讨激活大麻素2型受体在LPS诱导的RAW264.7巨噬细胞炎症因子分泌中的作用及其可能机制。

1 材料和方法 1.1 主要材料与试剂

鼠源巨噬细胞RAW264.7细胞株(中科院典藏委员会细胞库);DMEM(Dulbecco’s modified eagle medium)培养基(美国Gibco公司);胎牛血清(FBS)(南美Gibco公司);LPS(美国Sigma公司);HU308(美国APExBIO公司);3-甲基腺苷(美国Medchem Express公司);ELISA试剂盒(武汉贝茵莱生物科技有限公司);逆转录试剂盒和SYBR Green Realtime PCR Master Mix试剂盒(日本TOYOBO公司);CFX ConnectTM荧光定量PCR仪(美国Bio-Rad公司);PBS、Marker和一抗稀释液(上海碧云天生物科技有限公司);兔抗鼠LC3多克隆抗体(英国Abcam公司);兔抗鼠Beclin1多克隆抗体和内参β-actin多克隆抗体(武汉三鹰生物技术有限公司);BCA法蛋白浓度检测试剂盒、HPR标记的山羊抗兔IgG和增强型ECL发光试剂盒(武汉贝茵莱生物科技有限公司),荧光定量PCR引物由武汉天一辉远基因科技有限公司合成。

1.2 巨噬细胞RAW264.7培养

巨噬细胞RAW264.7购自中科院典藏委员会细胞库。复苏后加入含10%胎牛血清的DMEM高糖培养基,置于37℃、5%CO2培养箱中培养,隔天换液,倒置显微镜下观察,待细胞培养至80%左右融合时,吸弃培养液,用PBS冲洗2次。用细胞刮轻轻将细胞刮下,反复轻柔吹打,形成单细胞悬液,计数后按1:3比例传代,用于实验。

1.3 实验分组及处理

将细胞以1×105个/mL的密度接种于6孔板(2 mL/孔)中,采用随机数字表法,将其分为4组(n=6):对照组(C组)、脂多糖组(LPS组)、脂多糖+CB2R激动剂HU308组(LPS+HU308组)、脂多糖+CB2R激动剂HU308+3-甲基腺苷组(LPS+HU308+3-MA组)。LPS组、LPS+HU308组和LPS+HU308+3-MA组加入终浓度为1 μg/mL的LPS,孵育15 min时,LPS+HU308+3-MA组加入终浓度为10 mmol/L的3-甲基腺苷,继续孵育15 min,LPS+HU308组和LPS+HU308+3-MA组加入终浓度为10 µmol/L的HU308孵育24 h。

1.4 细胞上清液中TNF-α、IL-1β和IL-18的浓度

取出加入各处理因素后的6孔板,每组取6个培养孔,取细胞培养上清液到干净离心管中,4℃、3 000 r/min,离心20 min,小心收集上清液,分装入冻存管,-80℃冰箱保存。严格按照酶联免疫吸附试剂盒说明书上的步骤进行操作,用酶标仪在450 nm波长处检测肿瘤坏死因子-α(tumor necrosis factor-α, TNF-α)、白细胞介素-1β(interleukin-1β)、白细胞介素-18(interleukin-18)的吸光度(OD)值,计算出标准曲线和回归方程,将样品吸光度值代入标准曲线,计算出样品中细胞因子的蛋白浓度。

1.5 细胞中ICAM-1和NLRP3 mRNA的表达水平

收取各组细胞,采用Trizol法提取细胞总RNA,使用逆转录试剂盒进行cDNA合成,具体操作步骤均严格按照试剂盒说明书进行;反转录产物采用SYBR Green荧光定量试剂盒进行定量检测。以GAPDH为内参。内参GAPDH上游引物:TGGAAGGACTCATGACCACA,下游引物:TTCAGCTCAGGGATGACCTT。ICAM-1上游引物:GTGATGCTCAGGTATCCATCCA,下游引物:CACAGTTCTCAAAGCACAGCG。NLRP3上游引物:ATTACCCGCCCGAGAAAGG,下游引物:TCGCAGCAAAGATCCACACAG。按照SYBR Green Realtime PCR Master Mix试剂盒说明书进行操作,采用20 μL体系进行PCR扩增,反应条件:95℃预变性1 min,95℃变性15 s,60℃退火15 s,72 ℃延伸45 s,共40个循环。CFX ConnectTM荧光定量PCR仪进行扩增并分析处理数据。采用2-△△CT法计算目的基因的相对表达量。

1.6 LC3和Beclin1的表达水平

收取各组细胞,加入组织蛋白裂解液和磷酸酶抑制剂,冰上裂解30 min,4℃、14 000 r/min,离心10 min,取上清液,BCA法进行蛋白浓度测定,采用Western blot法测定LC3和Beclin1的表达水平。加入5倍上样缓冲液,煮沸变性,取40 μg蛋白,经SDS-PAGE凝胶电泳,湿法转膜,5%脱脂奶粉室温封闭2 h,分别加入β-actin(稀释比1:1 000)、LC3(稀释比1:1 000)和Beclin1(稀释比1:1 000)一抗,4℃摇床孵育过夜,洗膜后加入辣根过氧化物酶(HPR)标记的山羊抗兔IgG二抗(稀释比1:10 000),室温摇床上孵育2 h,洗膜后ECL发光A、B显影剂按照1:1比例混匀后滴加在膜上,显影曝光。采用Image-Pro Plus 6.0图像分析软件测定条带灰度值,以目的蛋白灰度值与β-actin条带灰度值的比值反映目的蛋白的表达水平,并计算LC3-Ⅱ和LC3-Ⅰ的比值(LC3-Ⅱ/LC3-Ⅰ)。

1.7 统计学方法

采用SPSS17.0软件进行分析,计量资料以均数±标准差(Mean±SD)表示,组间比较采用单因素方差分析,各组方差齐时采用LSD-t检验,方差不齐时采用Dunnett's T3检验,以P<0.05为差异有统计学意义。

2 结果 2.1 各组细胞上清液中炎症因子浓度

与C组比较,LPS组TNF-α[(228.86±10.20) pg/mL vs (140.05±5.54) pg/mL]、IL-1β[(363.62±8.14) pg/mL vs (244.82±9.11) pg/mL]和IL-18[(293.28±13.57) pg/mL vs (202.84±9.54) pg/mL]的浓度升高(均P<0.05);与LPS组比较,LPS+HU308组TNF-α[(165.44±7.07) pg/mL]、IL-1β[(272.09±3.35) pg/mL]和IL-18[(220.41±6.01) pg/mL]的浓度降低(均P<0.05);与LPS+HU308组比较,LPS+HU308+3-MA组TNF-α[(197.06±5.59) pg/mL]、IL-1β[(318.98±11.54) pg/mL]和IL-18[(243.33±8.71) pg/mL]的浓度升高(均P<0.05)。见表 1

表 1 各组细胞上清液中炎症因子TNF-α、IL-1β和IL-18表达水平的比较(n=6, Mean±SD) Table 1 Comparison of inflammatory cytokines TNF-α, IL-1β and IL-18 level in the supernatant of each group(n=6, Mean±SD)
组别 TNF-α(pg/mL) IL-1β(pg/mL) IL-18(pg/mL)
C组 140.05±5.54 244.82±9.11 202.84±9.54
LPS组 228.86±10.20a 363.62±8.14a 293.28±13.57a
LPS+HU308组 165.44±7.07ab 272.09±3.35ab 220.41±6.01ab
LPS+HU308+3-MA组 197.06±5.59abc 318.98±11.54abc 243.33±8.71abc
F 224.507 246.856 114.374
注:与C组比较,aP<0.05;与LPS组比较,bP<0.05;与LPS+HU308组比较,cP<0.05
2.2 ICAM-1 mRNA和NLRP3 mRNA表达水平

与C组比较,LPS组ICAM-1[(5.88±0.32) vs (1.00±0.03)]和NLRP3[(8.07±0.93) vs (1.01±0.05)] mRNA表达升高(均P<0.05);与LPS组比较,LPS+HU308组ICAM-1[(3.21±0.35)]和NLRP3[(1.54±0.30)] mRNA表达降低(均P<0.05);与LPS+HU308组比较,LPS+HU308+3-MA组ICAM-1[(4.04±0.21)]和NLRP3 [(5.87±0.77)] mRNA表达升高(均P<0.05)。见表 2

表 2 各组细胞ICAM-1 mRNA、NLRP3 mRNA、LC3-Ⅱ/LC3-Ⅰ比值和Beclin1蛋白表达水平的比较(n=6, Mean±SD) Table 2 Comparison of ICAM-1 mRNA、NLRP3 mRNA、LC3-Ⅱ/LC3-Ⅰ ratio and Beclin1 level in each group(n=6, Mean±SD)
组别 ICAM-1 NLRP3 LC3-Ⅱ/LC3-Ⅰ Beclin1
C组 1.00±0.03 1.01±0.05 0.40±0.06 0.16±0.03
LPS组 5.88±0.32a 8.07±0.93a 0.50±0.03a 0.51±0.04a
LPS+HU308组 3.21±0.35ab 1.54±0.30ab 0.71±0.03ab 0.71±0.02ab
LPS+HU308+3-MA组 4.04±0.21abc 5.87±0.77abc 0.44±0.08c 0.32±0.03abc
F 361.852 179.871 41.020 424.451
注:与C组比较,aP<0.05;与LPS组比较,bP<0.05;与LPS+HU308组比较,cP<0.05
2.3 LC3-Ⅱ/LC3-Ⅰ比值和Beclin1蛋白表达水平

与C组比较,LPS组LC3-Ⅱ/LC3-Ⅰ比值[(0.50±0.03) vs (0.40±0.06)]和Beclin1[(0.51±0.04) vs (0.16±0.03)]表达上调(均P<0.05);与LPS组比较,LPS+HU308组LC3-Ⅱ/LC3-Ⅰ比值[(0.71±0.03)]和Beclin1[(0.71±0.02)]表达上调(均P<0.05);与LPS+HU308组比较,LPS+HU308+3-MA组LC3-Ⅱ/LC3-Ⅰ比值[(0.44±0.08)]和Beclin1[(0.32±0.03)]表达下调(均P<0.05)。见表 2

3 讨论

LPS是革兰氏阴性菌外膜的主要组成成分,通过诱导产生多种促炎介质激活细胞因子网络,诱导炎症反应[10]。巨噬细胞是抵抗病原体入侵的第一道防线,在炎症反应的早期被激活[11],LPS感染后刺激巨噬细胞产生炎症介质如IL-1β、IL-6和TNF-α等。目前使用LPS刺激巨噬细胞的模型已被广泛应用于评估抗炎药物的效应[10]。细胞间黏附分子-1(intercellular adhesion molecule-1, ICAM- 1)是I型跨膜糖蛋白,是介导黏附反应重要的一个黏附分子,具有重要的信号传导特性,与许多细胞反应如细胞黏附、迁移和聚集有关[12]。NLRP3是NOD (nucleotide binding oligomerization domain)样受体热蛋白结构域相关蛋白3 (NOD-like receptors),与凋亡相关斑点样蛋白(apoptosis-associated speck-like protein, ASC)和半胱天冬酶1(caspase1)组成NLRP3炎症小体,参与多种疾病的发生发展过程[13]。NLRP3炎症小体作为固有免疫的重要组分,能被多种病原体或危险信号所激活,通过诱导分泌促炎性细胞因子IL-1β和IL-18发挥炎症作用[14]。研究表明NLRP3炎症小体参与了脓毒症的炎症反应过程[15]

本研究使用终浓度为1 μg/mL的LPS刺激巨噬细胞,参考文献[16]选择CB2R激动剂HU308的浓度为10 μmol/L,结果表明,与C组比较,LPS组细胞上清液中炎症因子TNF-α、IL-1β和IL-18表达升高,ICAM-1 mRNA表达上调,提示LPS刺激后巨噬细胞分泌炎症因子增加。与LPS组相比,LPS+HU308组细胞上清液中炎症因子TNF-α、IL-1β和IL-18表达下降,ICAM-1 mRNA表达下调,提示激活CB2R可抑制LPS诱导的巨噬细胞炎症因子的分泌。

微管相关蛋白1轻链3(LC3)是酵母Atg8的同系物,细胞内存在两种形式的LC3蛋白,LC3-Ⅰ和LC3-Ⅱ。LC3-Ⅱ的含量或LC3-Ⅱ/LC3-Ⅰ的比例与自噬体的数量成正相关,在某种程度上反映了细胞的自噬活性[17]。Beclin1基因也称BECN1基因,是酵母Atg 6的同系物,Beclin1可与Ⅲ型磷脂酰肌醇3激酶形成复合物参与自噬体的形成,是自噬起始的重要调节因子。本研究结果表明,与LPS组相比,LPS+HU308组LC3-Ⅱ/LC3-Ⅰ比值和Beclin1表达上调,NLRP3 mRNA表达降低,提示激活CB2R可提高巨噬细胞自噬水平同时抑制NLRP3的表达。

本研究使用了自噬抑制剂3-甲基腺苷(3-Methyladenine, 3-MA),参考文献[18]选择药物浓度为10 mmol/L。结果表明,给予3-MA后HU308抑制炎症因子分泌的作用减弱,同时NLRP3 mRNA表达升高,提示激活CB2R抑制LPS刺激的巨噬细胞炎症因子分泌的机制可能与自噬水平增强和抑制NLRP3表达有关。研究发现,CB2R激动剂HU308通过增强自噬水平,抑制NLRP3的活化,减轻结肠炎和脑脊髓膜炎炎症反应。且越来越多的证据表明自噬可以通过清除损伤的线粒体,减少活性氧ROS和线粒体DNA的产生,抑制NLRP3炎症小体的活化,从而减少炎症因子的产生[22-25]。因此激活CB2R抑制LPS诱导的巨噬细胞炎症因子的分泌的机制是否与增强自噬从而抑制NLRP3炎症小体活化有关,仍需进一步探讨。

参考文献
[1] Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3)[J]. JAMA, 2016, 315(8): 801-810. DOI:10.1001/jama.2016.0287
[2] 张卉, 冯永文, 姚咏明. 自噬在脓毒症免疫反应中的潜在作用与意义[J]. 中华急诊医学杂志, 2019, 28(2): 131-134. DOI:10.3760/cma.j.issn.1671-0282.2019.02.001
[3] Marzo VD, Bifulco M, Petrocellis LD. The endocannabinoid system and its therapeutic exploitation[J]. Nat Rev Drug Discov, 2004, 3(9): 771-784. DOI:10.1038/nrd1495
[4] Zhou J, Burkovskiy I, Yang H, et al. CB2 and GPR55 receptors as therapeutic targets for systemic immune dysregulation[J]. Front Pharmacol, 2016, 7: 264. DOI:10.3389/fphar.2016.00264
[5] Shi J, Cai Q, Zhang JX, et al. AM1241 alleviates MPTP-induced Parkinson's disease and promotes the regeneration of DA neurons in PD mice[J]. Oncotarget, 2017, 40(8): 67837-67850. DOI:10.18632/oncotarget.18871
[6] Leinwand KL, Jones AA, Huang RH, et al. Cannabinoid receptor-2 ameliorates inflammation in murine model of crohn's disease[J]. J Crohn's Colitis, 2017, 11(11): 1369-1380. DOI:10.1093/ecco-jcc/jjx096
[7] Sierra S, Luquin N, Navarro-Otano J. The endocannabinoid system in cardiovascular function: novel insights and clinical implications[J]. Clin Auton Res, 2018, 28(1): 35-52. DOI:10.1007/s10286-017-0488-5
[8] 葛赟, 黄曼, 马岳峰. 自噬在脓毒症发生发展中作用的研究进展[J]. 中华急诊医学杂志, 2017, 26(11): 1330-1333. DOI:10.3760/cma.j.issn.1671-0282.2017.11.022
[9] Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity[J]. Nat Rev Immunol, 2013, 13(10): 722-737. DOI:10.1038/nri3532
[10] Gui H, Sun Y, Luo ZM, et al. Cannabinoid receptor 2 protects against acute experimental sepsis in mice[J]. Med Inflam, 2013, 2013: 1-10. DOI:10.1155/2013/741303
[11] Wang LQ, Jing JZ, Yan H, et al. Selenium pretreatment alleviated LPS-induced immunological stress via upregulation of several selenoprotein encoding genes in murine RAW264.7 cells[J]. Biol Trace Elem Res, 2018, 186(2): 505-513. DOI:10.1007/s12011-018-1333-y
[12] Woodfin A, Beyrau M, Voisin MB, et al. ICAM-1-expressing neutrophils exhibit enhanced effector functions in murine models of endotoxemia[J]. Blood, 2016, 127(7): 898-907. DOI:10.1182/blood-2015-08-664995
[13] Nakahira K, Haspel JA, Rathinam VAK, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome[J]. Nat Immunol, 2011, 12(3): 222-230. DOI:10.1038/ni.1980
[14] Zhou WY, Chen CY, Chen ZH, et al. NLRP3: A novel mediator in cardiovascular disease[J]. J Immun Res, 2018, 2018: 1-8. DOI:10.1155/2018/5702103
[15] Liu Y, Jing YY, Zeng CY, et al. Scutellarin suppresses NLRP3 inflammasome activation in macrophages and protects mice against bacterial sepsis[J]. Front Pharmacol, 2018, 8: 975. DOI:10.3389/fphar.2017.00975
[16] Jiang LS, Chen YM, Huang XJ, et al. Selective activation of CB2 receptor improves efferocytosis in cultured macrophages[J]. Life Sciences, 2016, 161: 10-18. DOI:10.1016/j.lfs.2016.07.013
[17] Klionsky DJ. Coming soon to a journal near you: The updated guidelines for the use and interpretation of assays for monitoring autophagy[J]. Autophagy, 2014, 10(10): 1691. DOI:10.4161/auto.36187
[18] Miller S, Oleksy A, Perisic O, et al. Finding a fitting shoe for Cinderella[J]. Autophagy, 2010, 6(6): 805-807. DOI:10.4161/auto.6.6.12577