中华急诊医学杂志  2019, Vol. 28 Issue (10): 1251-1255   DOI: 10.3760/cma.j.issn.1671-0282.2019.10.014
Toll样受体4/NF-κB信号通路在急性重症胰腺炎相关肺损伤中的表达及脂氧素A4类似物的干预作用研究
王立明 , 牛泽群 , 孙江利 , 冯辉 , 裴红红 , 潘龙飞     
西安交通大学第二附属医院急诊科,710004
摘要: 目的 探讨Toll样受体4/NF-κB信号通路在急性重症胰腺炎(ANP)相关肺损伤中的表达及脂氧素A4类似物(LXA4)的干预作用。方法 45只SD大鼠随机(随机数字法)分为假手术组、实验组、干预组,每组15只。实验组经胆胰管内注入牛磺胆酸钠制备ANP动物模型。假手术组胆胰管内不注入牛磺胆酸钠,其余操作同实验组。干预组制备ANP动物模型后,经尾静脉注射LXA4。各组大鼠再随机分为3组,每组5只。分别于术后6 h、12 h、24 h ①检测血清中淀粉酶、肿瘤坏死因子-α(TNF-α)、白介素-1β(IL-1β)、白介素-6(IL-6)、内毒素含量; ②进行肺损伤学评分,计算肺湿/干质量比值; ③ Western-blot检测肺组织中TLR4、NF-κB p65蛋白表达。结果 实验组、干预组术后血清淀粉酶、TNF-α、IL-1β、IL-6、内毒素水平均明显高于假手术组,干预组术后上述指标水平明显低于实验组,差异均有统计学意义(P < 0.05)。实验组术后肺损伤学评分、肺湿/干质量比值均明显高于假手术组,差异有统计学意义(P < 0.05); 干预组术后6 h肺损伤学评分与假手术组比较差异无统计学意义(P>0.05),但术后6 h肺湿/干质量比值以及12 h、24 h的肺损伤学评分、肺湿/干质量比值均明显高于假手术组,差异有统计学意义(P<0.05); 干预组术后肺损伤学评分、肺湿/干质量比值均明显低于实验组,差异有统计学意义(P < 0.05)。实验组、干预组术后肺组织中TLR4、NF-κB p65表达水平均明显高于假手术组,干预组术后肺组织中TLR4、NF-κB p65表达水平均明显低于实验组,差异有统计学意义(P < 0.05)。结论 LXA4能够减轻急性重症胰腺炎相关肺损伤的程度,其作用机制与降低内毒素刺激,从而抑制TLR4信号通路和NF-κB p65活化,下调促炎性细胞因子水平有关。
关键词: Toll样受体4    脂氧素A4类似物    急性胰腺炎    肺损伤    
Expression of toll-like receptor 4/NF-κB signaling pathway in acute necrotizing pancreatitisassociated lung injury and intervention of lipoxin A4 analogue
Wang Liming , Niu Zequn , Sun Jiangli , Feng Hui , Pei Honghong , Pan Longfei     
Emergency Department, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
Abstract: Objective To explore the role of toll-like receptor 4 (TLR4)/NF-κB signaling pathway in acute necrotizing pancreatitis (ANP)-associated lung injury and the intervention of lipoxin A4 (LXA4) analogue. Methods Forty-five Sprague-Dawley rats were randomly(random number)divided into the sham operation group, experimental group, and intervention group, each group containing 15 rats. ANP animal models were prepared by injecting sodium taurocholate into biliopancreatic tube in the experimental group. No sodium taurocholate was injected into biliopancreatic duct in the sham operation group. After the preparation of ANP animal models in the intervention group, LXA4 was injected through the tail vein. Rats in each group were randomly divided into 3 subgroups (n=5 each subgroup). The serum amylase, TNF- α, IL-1β, IL-6 and endotoxin levels were detected 6, 12 and 24 h after the operation. The lung injury scores were assessed and the lung wet/dry weight ratio was calculated. The expressions of TLR4 and NF-κB p65 in lung tissues were detected by Western blot. Results Serum levels of amylase, TNF-α, IL-1β, IL-6 and endotoxin in the experimental and intervention groups were significantly higher than those in the sham operation group, while the levels of the above indicators in the intervention group was significantly lower than those in the experimental group, and the differences were statistically significant (P < 0.05). Postoperative lung injury scores and lung wet/dry weight ratio in the experimental group were significantly higher than those in the sham operation group, and the differences were statistically significant (P < 0.05). Lung injury scores in the intervention group 6 h after operation had no significant difference compared with those in the sham operation group (P > 0.05), while lung wet/dry weight ratio in the intervention group 6 h after operation, and lung injury scores and lung wet/dry weight ratio in the intervention group 12 h or 24 h respectively after operation were significantly higher than those in the sham operation group, with statistically significant differences (P < 0.05). Postoperative lung injury scores and lung wet/dry weight ratio in the intervention group were significantly lower than those in the experimental group, and the differences were statistically significant (P < 0.05). The expressions of TLR4 and p65 in the lung tissues of the experimental and intervention groups were significantly higher than those of the sham operation group, and the expressions of TLR4 and p65 in the lung tissues of the intervention group were significantly lower than those of the experimental group, with statistically significant differences (P < 0.05). Conclusions LXA4 can reduce the severity of acute necrotizing pancreatitis-associated lung injury, and its mechanism is related to reducing the stimulation of endotoxin, thus inhibiting TLR4 signaling pathway and the activation of p65 to down-regulate the level of pro-inflammatory cytokines.
Key words: TLR4    Lipoxin A4    Acute necrotizing pancreatitis    Acute lung injury    

急性肺损伤(acute lung injury,ALI)是急性重症胰腺炎(acute necrotizing pancreatitis,ANP)的最常见早期并发症之一,由肺损伤持续加重导致且进一步可发展为急性呼吸窘迫综合征(acute respiratory distress syndrome,ARDS)甚至危及生命,然而其确切发生机制尚不完全清晰,可能与ANP时大量炎症因子释放有关[1]。由于调控这些炎症因子产生的信号通路主要为Toll受体家族(toll-like receptor,TLRs)介导的核转录因子(nuclear factor kappa-B,NF-κB)等信号通路[2],而脂氧素A(lipoxin A,LXA)具有抑制白细胞游走、抑制黏附分子表达、拮抗白三烯等功能,脂氧素A4类似物(Lipoxin A4,LXA4)是体内炎症反应的重要抑制因子[3],因此,本研究分析了Toll样受体4(toll-like receptor 4,TLR4)/NF-KB信号通路在急性重症胰腺炎相关肺损伤中的作用,并探讨了LXA4的干预结果,旨在为临床急性重症胰腺炎相关肺损伤的治疗提供参考依据。

1 材料与方法 1.1 材料

牛磺胆酸钠购自美国Sigma-Aldrich公司。采用全自动生化分析仪检测血清淀粉酶含量(检测试剂盒购于Sigma公司)。应用ELISA法检测血清中TNF-α、IL-1β、IL-6含量(检测试剂盒购于北京中杉金桥生物有限公司)。应用微生物快速动态监测系统检测血清内毒素含量(检测试剂盒购于天津一瑞生物工程有限公司)。

1.2 实验动物及分组

清洁级健康雄性SD大鼠(SCXK(陕)2018-001)45只,体质量200~300 g,购于本校实验动物中心,在安静、温暖(18~25℃)、避强光、昼夜光照节律的实验室饲养1周后供本研究实验所用,自由饮水和摄食。为每只SD大鼠编号,按照随机数字表法分为假手术组、实验组、干预组,每组15只。本研究经西安交通大学动物实验伦理审批(XJTULAC2019-1150)。

1.3 方法 1.3.1 ANP动物模型制备

实验组:动物于术前12 h禁食,不禁水[4]。术前腹腔内注射10%水合氯醛3~4 mL/kg麻醉[5],达到满意麻醉状态后腹部备皮,剑突下腹正中开腹,找到十二指肠及胆胰管,阻断胆总管出肝门处,静脉留置针穿刺胆胰管开口处的十二指肠对侧壁,进入十二指肠肠腔,退出针芯,进入套管,按1 mL/kg体质量的剂量缓慢(0.1 mL/min)注射4%牛磺胆酸钠10 min[6];注射完毕应用血管钳夹闭胆总管入十二指肠处5 min[5],肉眼可见充血、水肿时提示造模成功,随后缝合、关腹; 所有实验操作在无菌操作下完成。

假手术组:胆胰管内不注入牛磺胆酸钠,其余操作同实验组。干预组:于造模后30 min经尾静脉注射LXA4,具体剂量参考文献[7]标准(87.5μg/kg)。假手术组和实验组均于造模后30 min经尾静脉注射等量生理盐水。

1.3.2 标本采集

将各组15只大鼠随机分为3组,每组5只,分别于术后6 h、12 h、24 h采用腹主动脉抽血法处死。采集血液后抗凝、离心,采集血清; 取胰腺和肺组织。

(1)大鼠术后血清淀粉酶、肿瘤坏死因子-α(TNF-α)、白介素-1β(IL-1β)、白介素-6(IL-6)、内毒素水平检测

(2)大鼠术后肺损伤学评分、肺湿/干质量比值取右肺上叶进行常规病理检查,参考Osman肺脏组织学评分[8]标准进行肺损伤评分,从“肺组织水肿”,“肺泡组织中性粒细胞、肺间质单核细胞浸润”,“肺组织出血”三个层面进行评分,评分范围0~9分,分数越高表明肺组织损伤程度越严重。

取左肺称质量,电热干燥箱烘烤(60℃,48 h),称干质量。计算肺组织湿/干质量比值[9]=(肺湿质量-肺干质量)/肺干质量。

(3)大鼠术后肺组织中TLR4、NF-κB p65蛋白表达检测取10 g右肺中叶,匀浆,常规进行Western-blot检测。TLR4、NF-κB p65蛋白一抗及二抗均购于美国Sigma公司,实验结束后经图像分析软件进行分析,以平均灰度值表示TLR4、NF-κB p65蛋白的相对含量。

1.4 统计学方法

实验数据应用SPSS 21.0软件分析,计量资料用均数±标准差(Mean±SD)表示,采用单因素方差分析及LSD-t检验进行统计学分析,以P<0.05为差异有统计学意义。

2 结果 2.1 各组大鼠术后血清淀粉酶、TNF-α、IL-1β、IL-6、内毒素水平比较

统计结果显示,实验组、干预组术后6 h、12 h、24 h的血清淀粉酶、TNF-α、IL-1β、IL-6、内毒素水平均明显高于假手术组,差异有统计学意义(P<0.05); 干预组术后6 h、12 h、24 h的血清淀粉酶、TNF-α、IL-1β、IL-6、内毒素水平均明显低于实验组,差异有统计学意义(P<0.05)。见表 1

表 1 各组大鼠术后血清淀粉酶、TNF-α、IL-1β、IL-6、内毒素水平比较(Mean±SD) Table 1 Comparison of serum levels of amylase, TNF-α, IL-1β, IL-6 and endotoxin in each group(Mean±SD)
指标 n 术后6 h 术后12 h 术后24 h F P
淀粉酶(U/L)
  假手术组 5 246.53±9.42 242.28±10.57 249.46±14.82 0.465 0.639
  实验组 5 831.80±18.24c 1765.47±71.86ac 2314.45±52.65abc 1019.334 <0.001
  干预组 5 520.70±32.31cd 1144.52±55.91acd 1908.19±64.70abcd 866.872 <0.001
  F 877.671 1047.350 2501.024
  P <0.001 <0.001 <0.001
TNF-α(pg/mL)
  假手术组 5 15.93±0.70 16.22±1.39 16.01±2.52 0.040 0.961
  实验组 5 377.64±24.02c 762.74±40.88ac 985.84±53.29abc 279.085 <0.001
  干预组 5 82.08±11.13cd 156.66±10.05acd 291.62±45.13abcd 74.827 <0.001
  F 793.569 1330.650 767.241
  P <0.001 <0.001 <0.001
IL-1β(pg/mL)
  假手术组 5 43.97±10.15 45.37±9.40 48.00±12.46 0.181 0.837
  实验组 5 94.74±10.21c 193.13±20.51ac 347.76±26.80abc 196.275 <0.001
  干预组 5 79.04±11.80cd 98.94±14.13cd 157.82±18.33abcd 37.327 <0.001
  F 29.259 118.421 285.213
  P <0.001 <0.001 <0.001
IL-6(pg/mL)
  假手术组 5 33.58±11.11 35.54±9.60 32.89±4.03 0.122 0.886
  实验组 5 98.49±13.90c 164.18±20.50ac 196.41±21.66abc 34.510 <0.001
  干预组 5 78.00±6.63cd 139.76±15.51acd 122.74±7.27abcd 45.234 <0.001
  F 45.823 92.961 186.929
  P <0.001 <0.001 <0.001
内毒素(pg/L)
  假手术组 5 7.71±0.74 7.90±0.75 7.90±0.97 0.084 0.920
  实验组 5 86.80±10.30c 256.69±21.87ac 429.68±22.53abc 403.647 <0.001
  干预组 5 54.95±8.46cd 183.07±11.05acd 212.16±12.95abcd 290.431 <0.001
  F 133.343 407.491 986.692
  P <0.001 <0.001 <0.001
注:与术后6 h比较,aP<0.05;与术后12 h比较,bP<0.05;与假手术组比较,cP<0.05;与实验组比较,dP<0.05
2.2 各组大鼠术后肺损伤学评分、肺湿/干质量比值比较

实验组术后6 h、12 h、24 h的肺损伤学评分、肺湿/干质量比值均明显高于假手术组,差异有统计学意义(P<0.05); 干预组术后6h肺损伤学评分与假手术组比较差异无统计学意义(P>0.05),但术后6 h肺湿/干质量比值以及12 h、24 h的肺损伤学评分、肺湿/干质量比值均明显高于假手术组,差异有统计学意义(P<0.05); 干预组术后6 h、12 h、24 h的肺损伤学评分、肺湿/干质量比值均明显低于实验组,差异有统计学意义(P<0.05)。且肺损伤学评分,实验组术后12 h与6 h比较差异无统计学意义(P>0.05),术后24 h与术后12h比较差异无统计学意义(P>0.05)。见表 2

表 2 各组大鼠术后肺损伤学评分、肺湿/干质量比值比较(Mean±SD) Table 2 Comparison of postoperative lung injury scores and lung wet/dry weight ratio in each group(Mean±SD)
指标 n 术后6 h 术后12 h 术后24 h F P
肺损伤学评分
  假手术组 5 0.20±0.45 0.20±0.45 0.20±0.45 0.000 1.000
  实验组 5 3.40±1.95c 4.60±1.14c 6.40±1.14ac 5.344 0.022
  干预组 5 1.00±0.00d 2.00±0.71acd 3.00±0.00abcd 30.000 <0.001
  F 10.400 36.700 96.400
  P 0.002 <0.001 <0.001
肺湿/干质量比值
  假手术组 5 2.57±0.37 2.68±0.11 2.65±0.37 0.148 0.864
  实验组 5 4.03±0.19c 4.54±0.42ac 5.18±0.38abc 14.232 0.001
  干预组 5 3.29±0.32cd 4.02±0.29acd 4.25±0.28acd 14.419 0.001
  F 29.539 51.742 69.733
  P <0.001 <0.001 <0.001
注:与术后6 h比较,aP<0.05;与术后12 h比较,bP<0.05;与假手术组比较,cP<0.05;与实验组比较,dP<0.05
2.3 各组大鼠术后肺组织匀浆中TLR4、NF-κB p65表达水平比较

实验组、干预组术后6 h、12 h、24 h的肺组织中TLR4、NF-κB p65表达水平均明显高于假手术组,差异有统计学意义(P<0.05); 干预组术后6 h、12 h、24 h的肺组织中TLR4、NF-κB p65表达水平均明显低于实验组,差异有统计学意义(P<0.05)。见表 3图 1

表 3 各组大鼠术后肺组织中TLR4、NF-κB p65表达水平比较(Mean±SD) Table 3 Comparison of expression levels of TLR4 and NF-κB p65 in postoperative lung tissues of rats in each group(Mean±SD)
指标 n 术后6 h 术后12 h 术后24 h F P
TLR4
  假手术组 5 894.31±103.87 885.46±97.64 889.32±49.54 0.013 0.987
  实验组 5 1683.55±69.32c 2089.77±83.77ac 2349.02±65.75abc 104.529 <0.001
  干预组 5 1252.14±55.89cd 1458.05±104.44acd 1613.91±76.31abcd 24.878 <0.001
  F 125.154 198.244 634.110
  P <0.001 <0.001 <0.001
NF-κB p65
  假手术组 5 642.32±58.72 664.51±34.26 633.67±67.00 0.416 0.669
  实验组 5 1687.16±197.79c 1950.38±139.21ac 2314.30±124.66abc 20.091 <0.001
  干预组 5 1074.35±64.14cd 1331.89±109.47acd 1600.24±70.64abcd 49.191 <0.001
  F 88.569 190.664 426.541
  P <0.001 <0.001 <0.001
注:与术后6 h比较,Pa<0.05;与术后12 h比较,bP<0.05;与假手术组比较,cP<0.05;与实验组比较,dP<0.05

图 1 术后不同时间点肺组织中TLR4、NF-κB p65蛋白的表达 Fig 1 Expression of TLR4 and p65 proteins in lung tissues at different time points after operation
3 讨论

ANP的最常见早期并发症是ALI,其发病率约15%~60%,可由肺损伤持续加重导致,且进一步可发展为ARDS。有统计结果显示,60%~80%发病后1周内死亡的ANP患者均与ALI和(或)ARDS有关[10-12]。目前,ANP相关肺损伤的确切发生机制尚不完全清晰,得到证实的是TLRs家族的TLR4与其主要配体内毒素结合后被激活,致使ANP发生,同时可导致NF-κB活化,而激活的NF-κB信号通路可触发炎症介质瀑布样级联反应并导致大量炎症因子释放[13-15],进而参与胰外脏器损伤的发生发展过程。其中TNF-α、IL-6等促炎因子不仅在ANP的发病中发挥了核心作用,也是诱发最终多器官功能障碍的重要[16]因素。

本研究采用牛磺胆酸钠进行胆胰管逆行注射法造模,是目前最常用且最稳定的ANP造模方法[17-20]。目前国内广泛采用的是Zhang等[4]的方案,即采用3.5%牛磺胆酸钠进行造模,但是,袁琳等[21]研究发现,采用5%牛磺胆酸钠进行造模优于3.5%浓度,而Zhang等[6]采用4%浓度也获得了稳定的模型,因此,笔者进行预实验,采用4%牛磺胆酸钠胆胰管逆行注射法造模,随后通过对胰腺组织的观察、判断以及病理学检查、Schimidt评分[22]并结合淀粉酶等指标,发现采用4%牛磺胆酸钠进行胆胰管逆行注射法造模,可以稳定制造ANP模型,且符合ANP的生理、病理表现。因此,本研究采用该方案造模,随后观察各组大鼠术后不同时间点血中炎性细胞因子、内毒素的水平变化情况。结果显示,实验组、干预组术后6 h、12 h、24 h的TNF-α、IL-1β、IL-6、内毒素水平均明显高于假手术组。说明TNF-α、IL-1β、IL-6等炎性细胞因子参与了ANP相关肺损伤过程,可能与高水平的内毒素与TLR4的结合从而活化NF-κB信号传导通路有关。干预组术后6 h、12 h、24 h的TNF-α、IL-1β、IL-6、内毒素水平均明显低于实验组。说明经过LXA4的干预,能够对ANP发生时体内炎症反应等病理过程发挥一定的抑制作用,LXA4可能为体内重要的内源性促炎症消退介质。

脂氧素是二十烷家族的代谢产物,具有抑制白细胞游走、黏附分子表达、拮抗白三烯等功能,LXA4是体内炎症反应的重要刹车信号[23],已有研究结果证实,在减轻肺损伤、血管内皮细胞损伤、缺血-再灌注损伤等病理过程中,LXA4均发挥重要的保护作用[24-26]。进一步研究各组大鼠肺损伤的情况,结果表明实验组术后6 h、12 h、24 h,以及干预组术后12 h、24 h的肺损伤学评分、肺湿/干质量比值均明显高于假手术组; 干预组术后6 h、12 h、24 h的肺损伤学评分、肺湿/干质量比值均明显低于实验组,且术后6 h肺损伤学评分与假手术组比较差异无统计学意义,证实了经过LXA4的干预能够明显的减轻ANP相关肺损伤的程度。实验还发现,实验组术后12 h肺损伤学评分与6 h比较差异无统计学意义,术后24 h与术后12 h比较差异无统计学意义,说明应用LXA4可以延缓肺损伤的进展,进一步证实了LXA4对ANP相关肺损伤的潜在治疗作用。

为了进一步分析NF-κB信号传导通路在ANP相关肺损伤中的表达和LXA4的干预效果,经Western-blot实验检测了各组大鼠术后不同时间点肺组织中TLR4、NF-κB p65的蛋白表达情况,结果证实:TLR4、NF-κB p65的蛋白表达与TNF-α、IL-1β、IL-6、内毒素的变化具有类似趋势,进一步证实了TLR4、NF-κB参与了ANP相关肺损伤的发病过程以及LXA4的积极干预效果。

参考文献
[1] Störmann P, Lustenberger T, Relja B, et al. Role of biomarkers in acute traumatic lung injury[J]. Injury, 2017, 48(11): 2400-2406. DOI:10.1016/j.injury.2017.08.041
[2] Zhu ZY, Sun L, Hao R, et al. Nedd8 modification of Cullin-5 regulates lipopolysaccharide-induced acute lung injury[J]. Am J Physiol Lung Cell Mol Physiol, 2017, 313(1): L104-L114. DOI:10.1152/ajplung.00410.2016
[3] Peng CK, Wu CP, Lin JY, et al. Gas6/Axl signaling attenuates alveolar inflammation in ischemia-reperfusion-induced acute lung injury by up-regulating SOCS3-mediated pathway[J]. PLoS One, 2019, 14(7): e0219788. DOI:10.1371/journal.pone.0219788
[4] Zhang XP, Ye Q, Jiang XG, et al. Preparation method of an ideal model of multiple organ injury of rat with severe acute pancreatitis[J]. World Journal of Gastroenterology, 2007, 13(34): 4566-4573. DOI:10.3748/wjg.v13.i34.4566
[5] 李欢.重症急性胰腺炎大鼠肺损伤的病理生理变化及机制[D].河北医科大学, 2009. DOI: 10.7666/d.y1636673. http://cdmd.cnki.com.cn/Article/CDMD-11919-2009139301.htm
[6] Zhang DQ, Feng H, Chen WC. Effects of Hydrogen-Rich Saline on Taurocholate-Induced Acute Pancreatitis in Rat[J]. Evidence-Based Complementary and Alternative Medicine, 2013(2013): 1-6. DOI:10.1155/2013/731932
[7] 周春华, 呼闯营, 王少峰, 等. 脂氧素A4类似物对急性胰腺炎肺损伤大鼠的保护作用[J]. 中华实验外科杂志, 2012, 29(9): 1784-1787. DOI:10.3760/cma.j.issn.1001-9030.2012.09.051
[8] Kiyonari Y, Nishina K, Mikawa K, et al. Lidocaine attenuates acute lung injury induced by a combination of phospholipase A2 and trypsin[J]. Crit Care Med, 2000, 28(2): 484-489. DOI:10.1097/00003246-200002000-00033
[9] Collins JC, Newman JH, Wickersham NE, et al. Relation of blood-free to blood-inclusive postmortem lung water measurements in sheep[J]. Journal of Applied Physiology, 1985, 59(2): 592. DOI:10.1152/jappl.1985.59.2.592
[10] Shields CJ, Winter DC, Redmond HP. Lung injury in acute pancreatitis: mechanisms, prevention, and therapy[J]. Current Opinion in Critical Care, 2002, 8(2): 158-163. DOI:10.1097/00075198-200204000-00012
[11] 陈秋星, 吕德超, 曹斌, 等. 重症急性胰腺炎并发急性肺损伤危险因素的临床研究[J]. 肝胆胰外科杂志, 2012, 24(6): 451-454, 458. DOI:10.3969/j.issn.1007-1954.2012.06.004
[12] Li QQ, Sun MH, Wan ZR, et al. Bee pollen extracts modulate serum metabolism in lipopolysaccharide-induced acute lung injury mice with anti-inflammatory effects[J]. J Agric Food Chem, 2019, 67(28): 7855-7868. DOI:10.1021/acs.jafc.9b03082
[13] Pan LF, Yu L, Wang LM, et al. Augmenter of liver regeneration (ALR) regulates acute pancreatitis via inhibiting HMGB1/TLR4/NF-kappa B signaling pathway[J]. Am J Transl Res, 2018, 10(2): 402-410.
[14] Pan LF, Yu L, Wang LM, et al. Inflammatory stimuli promote oxidative stress in pancreatic acinar cells via Toll-like receptor 4/nuclear factor-κB pathway[J]. International Journal of Molecular Medicine, 2018, 42(6): 3582-3590. DOI:10.3892/ijmm.2018.3906
[15] Jiang QH, Wang SJ, Shi Y. Posttreatment With LYRM03 Protects Rats From Acute Lung Inflammation Induced by Lipopolysaccharide via Suppressing the NF-κB/MyD88/TLR4 Axis[J]. J Surg Res, 2019, 27(243): 316-324. DOI:10.1016/j.jss.2019.05.036
[16] Wang J, Fan SM, Zhang J. Epigallocatechin-3-gallate ameliorates lipopolysaccharide-induced acute lung injury by suppression of TLR4/NF-κB signaling activation[J]. Braz J Med Biol Res, 2019, 52(7): e8092. DOI:10.1590/1414-431x20198092
[17] Aho H J, Koskensalo S M, Nevalainen TJ. Experimental pancreatitis in the rat: Sodium taurocholate-induced acute haemorrhagic pancreatitis[J]. Scand J Gastroenterol, 1980, 15(4): 411-416. DOI:10.3109/00365528009181493
[18] Zhao Q, Zhang H, Huang JH, et al. Melatonin attenuates the inflammatory response via inhibiting the C/EBP homologous protein-mediated pathway in taurocholate-induced acute pancreatitis[J]. International Journal of Molecular Medicine, 2018, 42(6): 3513-3521. DOI:10.3892/ijmm.2018.3920
[19] Silva-Vaz P, Abrantes AM, Castelo-Branco M, et al. Murine Models of Acute Pancreatitis: A Critical Appraisal of Clinical Relevance[J]. Int J Mol Sci, 2019, 20(11): 2794. DOI:10.3390/ijms20112794
[20] Banks PA, Bollen TL, Dervenis C, et al. Classification of acute pancreatitis—2012: revision of the Atlanta classification and definitions by international consensus[J]. Gut, 2013, 62(1): 102-111. DOI:10.1136/gutjnl-2012-302779
[21] 袁琳, 周秉舵, 王晓素, 等. 三种不同严重程度大鼠重症胰腺炎模型比较研究[J]. 中国比较医学杂志, 2015, 25(05): 20-23. DOI:10.3969/j.issn.1671.7856.2015.005.005
[22] Schmidt J, Rattner DW, Lewandrowski K, et al. A Better Model of Acute Pancreatitis for Evaluating Therapy[J]. Annals of Surgery, 1992, 215(1): 44-56. DOI:10.1097/00000658-199201000-00007
[23] 葛思堂, 赵群, 王姗, 等. 脂氧素A4对重症急性胰腺炎模型小鼠肾损伤的保护性作用[J]. 齐齐哈尔医学院学报, 2018, 39(20): 2361-2363. DOI:10.3969/j.issn.1002-1256.2018.20.002
[24] Liu HZ, Zhou KF, Liao LK, et al. Lipoxin A4 receptor agonist BML-111 induces autophagy in alveolar macrophages and protects from acute lung injury by activating MAPK signaling[J]. Respir Res, 2018, 19(1): 243. DOI:10.1186/s12931-018-0937-2
[25] Liu ZH, Qu M, Yang Q, et al. Lipoxin A4 ameliorates renal ischaemia-reperfusion-induced acute lung injury in rats[J]. Clin Exp Pharmacol Physiol, 2019, 46(1): 65-74. DOI:10.1111/1440-1681.13023
[26] Pádua TA, Torres ND, Candéa ALP, et al. Therapeutic effect of Lipoxin A4 in malaria-induced acute lung injury[J]. J Leukoc Biol, 2018, 103(4): 657-670. DOI:10.1002/JLB.3A1016-435RRR