中华急诊医学杂志  2021, Vol. 30 Issue (7): 902-906   DOI: 10.3760/cma.j.issn.1671-0282.2021.07.026
脓毒症相关性脑病的发病机制和干预措施研究进展
万田田 , 姬文卿 , 郭树彬     
首都医科大学附属北京朝阳医院急诊医学临床研究中心;心肺脑复苏北京市重点实验室 100020

脓毒症是宿主对感染的反应失去平衡,最终导致危及生命的器官功能障碍[1]。一项基于全球84个国家的脓毒症患者流行病学数据的研究显示,脓毒症的重症监护室(intensive care unit,ICU)发病率为29.5%,ICU病死率为25.8%[2]。而在我国ICU入院患者中,脓毒症的发病率达到37.3%, 病死率达28.7%[3]。在远期病死率方面,脓毒症患者的1年病死率为23%,2年病死率为28.8%,5年病死率达43.8%[4]。有研究显示,与患病前相比,脓毒症患者的生活质量会有所降低[5]。另外,研究发现,脓毒症的发患者群存在性别和种族方面的差异,男性和非白种人发生脓毒症的风险要比女性及白种人高[6]。肺部和腹部感染是我国脓毒症患者最常见的感染部位[3]。然而脓毒症是一种累及全身各大系统的疾病,当引起急性神经功能障碍时被称为脓毒症相关性脑病(sepsis associated encephalopathy, SAE)[7]。研究证实,8%~70%的脓毒症患者会发生SAE[8]。SAE是一种弥漫性脑功能损伤,继发于体内感染而没有明显的中枢神经系统感染[9]。SAE根据疾病的严重程度有多样的临床表现,轻则表现为心理功能障碍如焦虑、抑郁、创伤后应激障碍,重则表现为认知功能损害如记忆功能下降和执行困难,甚至死亡[10]。其中认知功能损害中以记忆功能损伤尤为突出[11]

1 SAE的病理生理机制

SAE的病理生理机制尚未完全阐明,目前普遍接受的几种机制如下:脑灌注受损、神经递质改变、血脑屏障受损、氧化应激、炎症反应、细胞凋亡、小胶质细胞激活和代谢水平紊乱。各种机制之间不是相互独立,而是相互联系的。

1.1 脑灌注受损

动物模型的研究表明,脑微循环在脓毒症期间受损,即脓毒症组脑小血管灌注比例和功能毛细血管密度等指标均较对照组有所降低[12-13]。一项前瞻性观察研究发现,脓毒症休克并发SAE的脑磁共振成像(magnetic resonance imaging,MRI)表现为缺血性卒中的比例为29%,而且缺血性卒中与弥散性血管内凝血等因素独立相关[14]。另外,脑血流自身调节功能障碍也是脑灌注受损的机制之一,即当血管自身调节发生障碍时,患者脑血流灌注会因为脓毒症休克全身血压的下降而下降[15]。一旦脑灌注受损则容易引起缺血缺氧,然而对缺血缺氧敏感的脑区域有很多,比较容易受影响的是海马阿蒙角。研究发现,缺血后此区域神经元会出现胞质萎缩,细胞核缩小等缺血样改变[16]。临床研究表明,与非脓毒症患者相比,脓毒症患者在记忆和语言学习方面存在缺陷,且其左侧海马体积显著减小,揭示海马病变与认知功能障碍有一定的联系[17]。故推断SAE的发生机制之一,可能为脑灌注受损时导致对缺血缺氧敏感的海马区发生病变,进而导致认知功能发生变化。

1.2 神经递质改变

目前认为比较明显的神经递质改变包括胆碱能通路、脑源性神经营养因子(brain derived neurotrophic factor,BDNF)、γ-氨基丁酸受体表达等。研究表明,胆碱能耗竭易诱发脂多糖(lipopolysaccharide,LPS)引起的认知功能障碍[18]。具体的机制可能与α7烟酸乙酰胆碱受体(α7 nicotinic acetylcholine receptor,α7 nAChR)激活的胆碱能抗炎通路减弱有关,研究证明,应用选择性α7 nAChR激动剂PHA 568487可显著改善LPS加重的神经系统炎症反应和记忆功能障碍[19]。BDNF在海马突触可塑性和认知功能中起着关键作用[20]。研究表明,脓毒症动物模型的海马组织中伴有BDNF水平的降低,同时伴有认知功能障碍,故不能排除BDNF在SAE中的作用[21]。另外,脓毒症大鼠前脑γ-氨基丁酸A型受体密度增高,这种改变可能与SAE功能障碍的发病机制密切相关[22]。故以上神经递质的改变可能都是SAE病理生理学的重要方面。

1.3 血脑屏障(blood brain barrier,BBB)改变

研究证实,BBB损伤是SAE的发病机制之一[23]。Sharshar等[24]采用MRI技术评估SAE脑损伤,提示脓毒症时BBB通透性增高,且与不良预后相关。同样,在LPS诱导的大鼠SAE模型中证实,SAE时伴随BBB功能障碍[25]。另一项动物模型实验表明,SAE时紧密连接蛋白的水平低下, 其中微血管内皮细胞线粒体功能障碍是BBB被破坏的机制之一[26]。脓毒症发生时,许多物质都能够改变BBB的通透性。近期研究发现,聚合酶delta作用蛋白2通过转录因子核因子-κB(nuclear factor kappa B,NF-κB)/环氧合酶-2信号通路介导LPS诱导的BBB通透性改变[27]。有研究中表明,脓毒症期间BBB通透性的增加会导致神经小胶质细胞的激活和细胞毒性介质的产生,而这些介质反过来又会作用于BBB,进一步增加其通透性,故BBB的破坏既是造成SAE的原因,也是SAE产生的后果[28]

1.4 氧化应激、炎症反应及细胞凋亡

脓毒症期间,中枢神经系统海马组织中的氧化产物、肿瘤坏死因子-α、白介素-1β等炎症因子水平会升高,表明体内存在氧化应激和炎性反应过程,最终导致神经元凋亡及认知功能障碍[29-30]。研究证实,肿瘤坏死因子、白介素-6和白介素-1等为脓毒症早期炎症因子[31],而高迁移率族蛋白B1(high mobility group box protein 1,HMGB1)是脓毒症重要的晚期促炎介质[32-33],其促炎机制与髓样分化因子2相关信号通路有关[34]。HMGB1及其信号转导在SAE的发病机制中起着关键作用[35]。脓毒症发生时,血清中HMGB1水平升高,而且至少持续4周,导致个体学习和记忆出现明显的持续性损伤[36]

1.5 小胶质细胞激活

小胶质细胞是中枢神经先天免疫系统的吞噬细胞, 介导免疫反应,并根据大脑环境迅速调整其表型和功能[37]。研究发现,小胶质细胞的激活是脓毒症相关的长期认知障碍的一个重要因素[38]。LPS激活小胶质细胞的机制可能与NF-κB信号通路相关[39]

1.6 代谢紊乱

脓毒症患者易并发急性呼吸窘迫综合征(acute respiratory distress syndrome, ARDS)[40]。而研究表明,长期的ARDS存活者可能存在明显认知异常,特别是在记忆和执行功能方面[41]。ARDS并发认知功能障碍的机制可能与低氧血症、BBB被破坏、炎症反应等因素相关[42]。应激性高血糖是脓毒症期间常见的代谢紊乱[43]。其加剧SAE症状的机制与高血糖激活神经胶质细胞、促进炎症反应有关[44]。故不能排除血氧、血糖等代谢方面的因素对SAE的影响。

2 SAE的干预措施 2.1 改善脑灌注

2018年脓毒症指南的“1小时集束化治疗”指出,对于低血压或者乳酸≥4 mmol/L的患者,应在发现脓毒症后1 h内以30 mL/kg开始快速补充晶体液[45],以此保证脑灌注, 防止神经元缺血缺氧, 有利于预防SAE的发生。研究发现,一种关于胶质母细胞瘤临床研究新药OKN-007能够改善脓毒症时海马组织及皮质区域的脑血流灌注[46]。然而,OKN-007在SAE中的作用需要进一步研究证实。

2.2 改变神经递质水平

α7 nAChR正向别构调节剂(PNU120596)具有改善LPS诱导的海马组织和前额叶皮质炎症反应等作用,从而改善认知功能缺陷、焦虑及类似抑郁的行为[47]。石杉碱甲是一种乙酰胆碱酯酶抑制剂。有学者发现,石杉碱甲通过改善胆碱能神经功能缺陷,抑制体内炎症因子水平上升,最终防止LPS诱导的认知功能下降[48]。动物模型的研究表明,电针刺激和人参皂苷Rg1均能够阻止脓毒症动物模型海马组织α7 nAChR表达量、乙酰胆碱含量的下降及乙酰胆碱酯酶活性的增加,并具有改善认知功能损伤的作用[49-50]。研究证明,葫芦巴碱和米诺环素均有改善脓毒症动物模型海马组织BDNF水平的作用,减轻LPS诱导的认知功能障碍[51-52]

2.3 改善血脑屏障

新活素是一种重组人脑利钠肽。研究发现,其可通过改善脓毒症小鼠模型BBB损伤等机制,减轻脑组织的病理性损伤,最终调节认知功能[53]。线粒体功能障碍抑制剂P110,被证明可以调节BBB通透性,并可减轻LPS对神经元的直接毒性作用,对SAE有潜在的治疗意义[26]。Omi/HtrA2是一种促凋亡的线粒体丝氨酸蛋白酶,研究发现Omi/HtrA2抑制剂UCF-101可减少LPS诱导的脑内皮细胞凋亡,显著改善LPS诱导的BBB破坏,并增加紧密连接蛋白表达,为SAE提供一种新的治疗手段[54]。同样,吸入2%氢气可以明显减轻脓毒症时BBB破坏,减少脑组织水肿,改善SAE症状[30, 55]。另外,研究证明OKN-007和异甘草素均能够改善脓毒症时BBB的通透性,然而, 两者在SAE中的作用需要进一步研究证实[46, 56]

2.4 减少氧化应激、炎症反应及细胞凋亡

富氢生理盐水可以抑制脓毒症模型海马组织中氧化应激水平和细胞凋亡,最终改善认知功能及降低病死率[57]。在脓毒症大鼠模型中发现,维生素C可通过减少脑组织氧化应激从而改善SAE症状及生存率[58]。2%氢气和UCF-101除了能够改善脓毒症时BBB通透性外,还抑制海马组织中氧化损伤、炎症因子水平升高及细胞凋亡,在改善SAE认知功能损伤方面具有保护作用[30, 59-60]。如上所述,电针刺激疗法和葫芦巴碱除了具有以上作用机制外,两者均能够通过减少海马组织氧化应激和炎症因子水平来对LPS介导的认知障碍产生神经保护作用[49, 51]。研究发现,新活素通过抑制NF-κB通路降低炎症因子水平,抑制神经元凋亡,因此是有望治疗SAE的一种药物[53]。动物实验表明,Nod样受体蛋白3(nod-like receptor protein 3, NLRP3)抑制剂MCC950可以明显改善SAE小鼠的认知功能,其机制与抑制海马组织中NLRP3炎症小体的激活及炎症因子的释放有关[61]。另外,研究证实,川芎嗪可以改善SAE症状[62]。而进一步研究发现,其治疗机制可能与抑制海马炎症反应有关[63]。如上所述,HMGB1是脓毒症病理生理学的重要炎症介质,使用抗HMGB1抗体可以预防或逆转脓毒症存活者的认知障碍[36]。研究发现,HMGB1抑制剂丙酮酸乙酯,能够抑制HMGB1从细胞核向细胞质转运,减弱晚期糖基化终产物受体的表达及NF-κB信号通路效应,可能成为SAE治疗的新靶点[35]

2.5 阻止小胶质细胞激活

近年来,多酚类化合物被证明对于改善脓毒症导致的认知功能损伤有一定作用。如阿魏酸、橙皮苷、菊苣酸和圣草酚均被证明可以通过抑制小胶质细胞的激活,继而对脓毒症的炎症反应、神经元凋亡和认知功能损伤产生神经保护作用[29, 64-66]。动物实验表明,米诺环素和加兰他敏均能够抑制脓毒症时体内小胶质细胞的激活,减少认知功能损害[38, 52, 67]。此外,研究证实,Toll样受体4特异性抑制剂TAK-242对SAE引起的学习记忆功能障碍具有改善作用, 其作用机制可能与抑制中枢小胶质细胞活化等因素有关[68]

2.6 调节代谢水平

应用胰岛素积极控制血糖水平可通过减弱NF-κB和丝裂原活化蛋白激酶信号通路,抑制神经胶质细胞的激活及改善BBB损伤,最终改善SAE相关症状[44]

2.7 预防和治疗谵妄

脓毒症患者通常需要收治于ICU。谵妄是脓毒症患者自ICU出院后认知功能障碍的独立危险因素[69]。故预防和治疗谵妄对于脓毒症相关认知功能障碍非常重要。研究证实,右美托咪定可降低ICU患者谵妄发生率[70]

3 展望

脓毒症存活患者长期存在的认知功能障碍已成为日益受关注的公共卫生问题。大量动物实验和临床试验对SAE发病机制和干预措施进行了不同的研究,但收效甚微,因此进一步加强对脓毒症及SAE的研究具有极其重要的理论意义和临床价值。

利益冲突  所有作者均声明不存在利益冲突

参考文献
[1] Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3)[J]. JAMA, 2016, 315(8): 801-810. DOI:10.1001/jama.2016.0287
[2] Vincent JL, Marshall JC, Namendys-Silva SA, et al. Assessment of the worldwide burden of critical illness: the intensive care over nations (ICON) audit[J]. Lancet Respir Med, 2014, 2(5): 380-386. DOI:10.1016/s2213-2600(14)70061-x
[3] Zhou J, Qian C, Zhao M, et al. Epidemiology and outcome of severe sepsis and septic shock in intensive care units in mainland China[J]. PLoS One, 2014, 9(9): e107181. DOI:10.1371/journal.pone.0107181
[4] Wang HE, Szychowski JM, Griffin R, et al. Long-term mortality after community-acquired sepsis: a longitudinal population-based cohort study[J]. BMJ Open, 2014, 4(1): e004283. DOI:10.1136/bmjopen-2013-004283
[5] Karlsson S, Ruokonen E, Varpula T, et al. Long-term outcome and quality-adjusted life years after severe sepsis[J]. Crit Care Med, 2009, 37(4): 1268-1274. DOI:10.1097/ccm.0b013e31819c13ac
[6] Martin GS, Mannino DM, Eaton S, et al. The epidemiology of sepsis in the United States from 1979 through 2000[J]. N Engl J Med, 2003, 348(16): 1546-1554. DOI:10.1056/NEJMoa022139
[7] Stubbs DJ, Yamamoto AK, Menon DK. Imaging in sepsis-associated encephalopathy—insights and opportunities[J]. Nat Rev Neurol, 2013, 9(10): 551-561. DOI:10.1038/nrneurol.2013.177
[8] Kafa IM, Bakirci S, Uysal M, et al. Alterations in the brain electrical activity in a rat model of sepsis-associated encephalopathy[J]. Brain Res, 2010, 1354: 217-226. DOI:10.1016/j.brainres.2010.07.049
[9] Gofton TE, Young GB. Sepsis-associated encephalopathy[J]. Nat Rev Neurol, 2012, 8(10): 557-566. DOI:10.1038/nrneurol.2012.183
[10] Annane D, Sharshar T. Cognitive decline after sepsis[J]. Lancet Respir Med, 2015, 3(1): 61-69. DOI:10.1016/S2213-2600(14)70246-2
[11] Widmann CN, Heneka MT. Long-term cerebral consequences of sepsis[J]. Lancet Neurol, 2014, 13(6): 630-636. DOI:10.1016/s1474-4422(14)70017-1
[12] Taccone FS, Su F, Pierrakos C, et al. Cerebral microcirculation is impaired during sepsis: an experimental study[J]. Crit Care, 2010, 14(4): R140. DOI:10.1186/cc9205
[13] Taccone FS, Su FH, de Deyne C, et al. Sepsis is associated with altered cerebral microcirculation and tissue hypoxia in experimental peritonitis[J]. Crit Care Med, 2014, 42(2): e114-e122. DOI:10.1097/ccm.0b013e3182a641b8
[14] Polito A, Eischwald F, Maho AL, et al. Pattern of brain injury in the acute setting of human septic shock[J]. Crit Care, 2013, 17(5): R204. DOI:10.1186/cc12899
[15] Terborg C, Schummer W, Albrecht M, et al. Dysfunction of vasomotor reactivity in severe sepsis and septic shock[J]. Intensive Care Med, 2001, 27(7): 1231-1234. DOI:10.1007/s001340101005
[16] Sharshar T, Annane D, de la Grandmaison GL, et al. The neuropathology of septic shock[J]. Brain Pathol, 2004, 14(1): 21-33. DOI:10.1111/j.1750-3639.2004.tb00494.x
[17] SemmLer A, Widmann CN, Okulla T, et al. Persistent cognitive impairment, hippocampal atrophy and EEG changes in sepsis survivors[J]. J Neurol Neurosurg Psychiatry, 2013, 84(1): 62-69. DOI:10.1136/jnnp-2012-302883
[18] Field RH, Gossen A, Cunningham C. Prior pathology in the basal forebrain cholinergic system predisposes to inflammation-induced working memory deficits: reconciling inflammatory and cholinergic hypotheses of delirium[J]. J Neurosci, 2012, 32(18): 6288-6294. DOI:10.1523/jneurosci.4673-11.2012
[19] Terrando N, Yang T, Ryu JK, et al. Stimulation of the α7 nicotinic acetylcholine receptor protects against neuroinflammation after Tibia fracture and endotoxemia in mice[J]. Mol Med, 2014, 20(1): 667-675. DOI:10.2119/molmed.2014.00143
[20] Lapchak PA, Araujo DM, Hefti F. Systemic interleukin-1 beta decreases brain-derived neurotrophic factor messenger RNA expression in the rat hippocampal formation[J]. Neuroscience, 1993, 53(2): 297-301. DOI:10.1016/0306-4522(93)90196-m
[21] Vasconcelos AR, Yshii LM, Viel TA, et al. Intermittent fasting attenuates lipopolysaccharide-induced neuroinflammation and memory impairment[J]. J Neuroinflammation, 2014, 11: 85. DOI:10.1186/1742-2094-11-85
[22] Kadoi Y, Saito S. An alteration in the gamma-aminobutyric acid receptor system in experimentally induced septic shock in rats[J]. Crit Care Med, 1996, 24(2): 298-305. DOI:10.1097/00003246-199602000-00020
[23] Piazza O, Cotena S, De Robertis E, et al. Sepsis associated encephalopathy studied by MRI and cerebral spinal fluid S100B measurement[J]. Neurochem Res, 2009, 34(7): 1289-1292. DOI:10.1007/s11064-008-9907-2
[24] Sharshar T, Carlier R, Bernard F, et al. Brain lesions in septic shock: a magnetic resonance imaging study[J]. Intensive Care Med, 2007, 33(5): 798-806. DOI:10.1007/s00134-007-0598-y
[25] Towner RA, Saunders D, Smith N, et al. Assessing long-term neuroinflammatory responses to encephalopathy using MRI approaches in a rat endotoxemia model[J]. Geroscience, 2018, 40(1): 49-60. DOI:10.1007/s11357-018-0009-z
[26] Haileselassie B, Joshi AU, Minhas PS, et al. Mitochondrial dysfunction mediated through dynamin-related protein 1 (Drp1) propagates impairment in blood brain barrier in septic encephalopathy[J]. J Neuroinflammation, 2020, 17(1): 36. DOI:10.1186/s12974-019-1689-8
[27] Kikuchi DS, Campos ACP, Qu HY, et al. Poldip2 mediates blood-brain barrier disruption in a model of sepsis-associated encephalopathy[J]. J Neuroinflammation, 2019, 16(1): 241. DOI:10.1186/s12974-019-1575-4
[28] Danielski LG, Giustina AD, Badawy M, et al. Brain barrier breakdown as a cause and consequence of neuroinflammation in sepsis[J]. Mol Neurobiol, 2018, 55(2): 1045-1053. DOI:10.1007/s12035-016-0356-7
[29] Rehman SU, Ali T, Alam SI, et al. Ferulic acid rescues LPS-induced neurotoxicity via modulation of the TLR4 receptor in the mouse hippocampus[J]. Mol Neurobiol, 2019, 56(4): 2774-2790. DOI:10.1007/s12035-018-1280-9
[30] Liu L, Xie K, Chen H, et al. Inhalation of hydrogen gas attenuates brain injury in mice with cecal ligation and puncture via inhibiting neuroinflammation, oxidative stress and neuronal apoptosis[J]. Brain Res, 2014, 1589: 78-92. DOI:10.1016/j.brainres.2014.09.030
[31] Ayala A, Chaudry IH. Immune dysfunction in murine polymicrobial sepsis: mediators, macrophages, lymphocytes and apoptosis[J]. Shock, 1996, Suppl 1: S27-S38. DOI:10.1097/00024382-199610001-00007
[32] Wang H. HMG-1 as a late mediator of endotoxin lethality in mice[J]. Science, 1999, 285(5425): 248-251. DOI:10.1126/science.285.5425.248
[33] Wang H, Yang H, Czura CJ, et al. HMGB1 as a late mediator of lethal systemic inflammation[J]. Am J Respir Crit Care Med, 2001, 164(10 pt 1): 1768-1773. DOI:10.1164/ajrccm.164.10.2106117
[34] Yang H, Wang H, Ju Z, et al. MD-2 is required for disulfide HMGB1-dependent TLR4 signaling[J]. J Exp Med, 2015, 212(1): 5-14. DOI:10.1084/jem.20141318
[35] Li YF, Li XH, Qu Y, et al. Role of HMGB1 translocation to neuronal nucleus in rat model with septic brain injury[J]. Neurosci Lett, 2017, 645: 90-96. DOI:10.1016/j.neulet.2016.11.047
[36] Chavan SS, Huerta PT, Robbiati S, et al. HMGB1 mediates cognitive impairment in sepsis survivors[J]. Mol Med, 2012, 18: 930-937. DOI:10.2119/molmed.2012.00195
[37] Madore C, Yin Z, Leibowitz J, et al. Microglia, lifestyle stress, and neurodegeneration[J]. Immunity, 2020, 52(2): 222-240. DOI:10.1016/j.immuni.2019.12.003
[38] Michels M, Vieira AS, Vuolo F, et al. The role of microglia activation in the development of sepsis-induced long-term cognitive impairment[J]. Brain Behav Immun, 2015, 43: 54-59. DOI:10.1016/j.bbi.2014.07.002
[39] Zhao JY, Bi W, Xiao S, et al. Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice[J]. Sci Rep, 2019, 9: 5790. DOI:10.1038/s41598-019-42286-8
[40] Bernard GR, Artigas A, Brigham KL, et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination[J]. Am J Respir Crit Care Med, 1994, 149(3): 818-824. DOI:10.1164/ajrccm.149.3.7509706
[41] Mikkelsen ME, Shull WH, Biester RC, et al. Cognitive, mood and quality of life impairments in a select population of ARDS survivors[J]. Respirology, 2009, 14(1): 76-82. DOI:10.1111/j.1440-1843.2008.01419.x
[42] Sasannejad C, Ely EW, Lahiri S. Long-term cognitive impairment after acute respiratory distress syndrome: a review of clinical impact and pathophysiological mechanisms[J]. Crit Care, 2019, 23(1): 352. DOI:10.1186/s13054-019-2626-z
[43] Marik PE, Raghavan M. Stress-hyperglycemia, insulin and immunomodulation in sepsis[J]. Intensive Care Med, 2004, 30(5): 748-756. DOI:10.1007/s00134-004-2167-y
[44] Huang CT, Lue JH, Cheng TH, et al. Glycemic control with insulin attenuates sepsis-associated encephalopathy by inhibiting glial activation via the suppression of the nuclear factor kappa B and mitogen-activated protein kinase signaling pathways in septic rats[J]. Brain Res, 2020, 1738: 146822. DOI:10.1016/j.brainres.2020.146822
[45] Levy MM, Evans LE, Rhodes A. The surviving sepsis campaign bundle: 2018 update[J]. Intensive Care Med, 2018, 44(6): 925-928. DOI:10.1007/s00134-018-5085-0
[46] Towner RA, Saunders D, Smith N, et al. Anti-inflammatory agent, OKN-007, reverses long-term neuroinflammatory responses in a rat encephalopathy model as assessed by multi-parametric MRI: implications for aging-associated neuroinflammation[J]. Geroscience, 2019, 41(4): 483-494. DOI:10.1007/s11357-019-00094-y
[47] Alzarea S, Rahman S. Alpha-7 nicotinic receptor allosteric modulator PNU120596 prevents lipopolysaccharide-induced anxiety, cognitive deficit and depression-like behaviors in mice[J]. Behav Brain Res, 2019, 366: 19-28. DOI:10.1016/j.bbr.2019.03.019
[48] Zhu SZ, Huang WP, Huang LQ, et al. Huperzine A protects sepsis associated encephalopathy by promoting the deficient cholinergic nervous function[J]. Neurosci Lett, 2016, 631: 70-78. DOI:10.1016/j.neulet.2016.07.009
[49] Han YG, Qin X, Zhang T, et al. Electroacupuncture prevents cognitive impairment induced by lipopolysaccharide via inhibition of oxidative stress and neuroinflammation[J]. Neurosci Lett, 2018, 683: 190-195. DOI:10.1016/j.neulet.2018.06.003
[50] Jin Y, Peng J, Wang X, et al. Ameliorative effect of ginsenoside Rg1 on lipopolysaccharide-induced cognitive impairment: role of cholinergic system[J]. Neurochem Res, 2017, 42(5): 1299-1307. DOI:10.1007/s11064-016-2171-y
[51] Chowdhury AA, Gawali NB, Munshi R, et al. Trigonelline insulates against oxidative stress, proinflammatory cytokines and restores BDNF levels in lipopolysaccharide induced cognitive impairment in adult mice[J]. Metab Brain Dis, 2018, 33(3): 681-691. DOI:10.1007/s11011-017-0147-5
[52] Hou Y, Xie G, Liu X, et al. Minocycline protects against lipopolysaccharide-induced cognitive impairment in mice[J]. Psychopharmacology (Berl), 2016, 233(5): 905-916. DOI:10.1007/s00213-015-4169-6
[53] Li N, Zhang EF, Zhang J, et al. Therapeutic effects of recombinant human brain natriuretic peptide on sepsis-associated encephalopathy in mice[J]. Int Immunopharmacol, 2020, 81: 106280. DOI:10.1016/j.intimp.2020.106280
[54] Hu YY, Bi Y, Yao DH, et al. Omi/HtrA2 protease associated cell apoptosis participates in blood-brain barrier dysfunction[J]. Front Mol Neurosci, 2019, 12: 48. DOI:10.3389/fnmol.2019.00048
[55] 冯竞成, 于洋, 毛幸, 等. 氢对脓毒症相关性脑病小鼠血脑屏障的影响[J]. 中华麻醉学杂志, 2018, 38(6): 719-722. DOI:10.3760/cma.j.issn.0254-1416.2018.06.021
[56] Zou P, Ji HM, Zhao JW, et al. Protective effect of isoliquiritigenin against cerebral injury in septic mice via attenuation of NF-κB[J]. Inflammopharmacology, 2019, 27(4): 809-816. DOI:10.1007/s10787-018-0503-z
[57] Zhou J, Chen Y, Huang GQ, et al. Hydrogen-rich saline reverses oxidative stress, cognitive impairment, and mortality in rats submitted to sepsis by cecal ligation and puncture[J]. J Surg Res, 2012, 178(1): 390-400. DOI:10.1016/j.jss.2012.01.041
[58] 吕娟娟, 陈志江, 陈剑锋, 等. 维生素C对脓毒症大鼠脑损伤的改善作用[J]. 中华实用儿科临床杂志, 2018, 33(18): 1415-1418. DOI:10.3760/cma.j.issn.2095-428X.2018.18.012
[59] Wang PF, Hu YY, Yao DH, et al. Omi/HtrA2 regulates a mitochondria-dependent apoptotic pathway in a murine model of septic encephalopathy[J]. Cell Physiol Biochem, 2018, 49(6): 2163-2173. DOI:10.1159/000493819
[60] Hu Y, Huang M, Wang P, et al. Ucf-101 protects against cerebral oxidative injury and cognitive impairment in septic rat[J]. Int Immunopharmacol, 2013, 16(1): 108-113. DOI:10.1016/j.intimp.2013.03.019
[61] 张晶云, 范云霞, 傅群, 等. MCC950对脓毒症相关性脑病小鼠认知功能的影响[J]. 中华急诊医学杂志, 2019, 28(7): 851-854. DOI:10.3760/cma.j.issn.1671-0282.2019.07.010
[62] 朱浩, 陈益君, 卢子会, 等. 川芎嗪对脓毒症相关性脑病大鼠海马神经元自噬的影响[J]. 中华麻醉学杂志, 2017, 37(10): 1278-1280. DOI:10.3760/cma.j.issn.0254-1416.2017.10.032
[63] 朱浩, 张益维, 周海东, 等. 川芎嗪对脓毒症相关性脑病大鼠海马炎症反应的影响[J]. 中华麻醉学杂志, 2020, 40(5): 629-632. DOI:10.3760/cma.j.cn131073.20200324.00529
[64] Muhammad T, Ikram M, Ullah R, et al. Hesperetin, a citrus flavonoid, attenuates LPS-induced neuroinflammation, apoptosis and memory impairments by modulating TLR4/NF-κB signaling[J]. Nutrients, 2019, 11(3). DOI:10.3390/nu11030648
[65] Liu Q, Chen Y, Shen C, et al. Chicoric acid supplementation prevents systemic inflammation-induced memory impairment and amyloidogenesis via inhibition of NF-κB[J]. FASEB J, 2017, 31(4): 1494-1507. DOI:10.1096/fj.201601071r
[66] He P, Yan S, Zheng J, et al. Eriodictyol attenuates LPS-induced neuroinflammation, amyloidogenesis, and cognitive impairments via the inhibition of NF-κB in male C57BL/6J mice and BV2 microglial cells[J]. J Agric Food Chem, 2018, 66(39): 10205-10214. DOI:10.1021/acs.jafc.8b03731
[67] Liu Y, Zhang YY, Zheng X, et al. Galantamine improves cognition, hippocampal inflammation, and synaptic plasticity impairments induced by lipopolysaccharide in mice[J]. J Neuroinflammation, 2018, 15(1): 112. DOI:10.1186/s12974-018-1141-5
[68] 庹鹏, 陈伟明, 刘先保, 等. TAK-242对脂多糖诱导的脓毒症脑病小鼠学习记忆功能障碍的改善作用[J]. 中国病理生理杂志, 2019, 35(4): 646-652. DOI:10.3969/j.issn.1000-4718.2019.04.011
[69] Pierrakos C, Attou R, Decorte L, et al. Cerebral perfusion alterations and cognitive decline in critically ill sepsis survivors[J]. Acta Clin Belg, 2017, 72(1): 39-44. DOI:10.1080/17843286.2016.1191851
[70] Ng KT, Shubash CJ, Chong JS. The effect of dexmedetomidine on delirium and agitation in patients in intensive care: systematic review and meta-analysis with trial sequential analysis[J]. Anaesthesia, 2019, 74(3): 380-392. DOI:10.1111/anae.14472