2. 北京大学人民医院急诊科,北京 100044
2. Emergency Medicine Center, Peking University People's Hospital, Beijing 100044, China
急性肺栓塞(acute pulmonary embolism,APE)是以各种栓子阻塞肺动脉或其分支的一组疾病或临床综合征的总称,临床表现形式多样,其诊断和及时的危险分层非常重要。通常根据血压、右心室功能障碍(right ventricular dysfunction, RVD)影像学检查及心脏生物标志物对急性肺栓塞(acute pulmonary embolism, APE)患者进行危险分层,分为高危,中高危,中低危,低危四组[1]。研究发现,炎症和凝血之间相互作用在血管疾病的病理生理中扮演重要作用,并可能导致血栓栓塞并发症。中性粒细胞(polymorphonuclear neutrophils, N)与淋巴细胞(lymphocyte, L)之比(NLR)是一种可从血常规中轻易获得的标志物,可以快捷方便的评估炎性状态。本研究的目的是评估包括NLR在内的临床参数对APE危险分层及预后的预测价值。
1 资料与方法 1.1 一般资料本研究经北京大学人民医院学术委员会科学研究委员会伦理评审(批号:[2022]院科审第(z132)号)。纳入标准:年龄 > 18岁;符合《2019年欧洲心脏病学会急性肺栓塞诊断和管理指南》[1]的相关诊断标准;经CTPA明确诊断为急性肺栓塞。排除标准:其他原因引起的血压下降,如新发的心律失常、低血容量或感染中毒性休克所致的血压下降。回顾性分析2015年1月至2021年3月北京大学人民医院急诊科符合上述纳入标准的APE患者182例。男性79例,女性103例,年龄48~76岁,(62.3±14.2)岁;首发症状:呼吸困难161例(88.5%),胸膜炎性胸痛38例(20.9%),晕厥31例(17.0%),休克23例(12.6%),咯血7例(3.8%)。发病至入院时间5~26 h,(16.8±12.4)h。根据2019 ESC危险分层标准[1],其中高危组23例,中高危组51例,中低危组46例,低危组62例。记录住院期间预后,死亡27例,存活155例。
1.2 观察指标与检测方法收集临床资料,使用SYSMEX XN-9000自动化血液计数器测定血常规参数(包括白细胞、血红蛋白、血小板计数,粒细胞及淋巴细胞分类计数,血小板平均体积、分布宽度),利用Roche C8000全自动生化分析仪检测生化指标(ALT、AST、BUN、Cr、白蛋白等指标);STARGO STA-R进行出凝血指标检测,使用酶联免疫法检测D-二聚体,ELISA试剂盒为欣博盛生物科技有限公司产品;血气分析:抽取桡动脉或股动脉血样,采用美国雅培血气分析仪i-STAT 300测定动脉血气分析数值,血气分析仪定时校准,符合监测血气分析操作规程;芯片采用美国雅培血气生化多项测试卡片(干式电化学法),型号EG7+。测定pH、动脉血氧分压(PO2)、动脉血二氧化碳分压(PCO2)和动脉血氧饱和度(SpO2)等。影像学:采用飞利浦超声诊断仪进行超声心动图检查,GE螺旋CT进行肺动脉CT造影检查。
1.3 统计学方法采用SPSS 22.0进行统计分析。计数资料用频数、百分比表示,比较采用χ2检验;计量资料符合正态分布者采用均数±标准差(x±s)表示,比较采用t检验或方差分析;不符合者采用M(Q1, Q3)表示,比较采用非参数检验。采用ROC工作曲线下面积(AUC)比较诊断价值,采用Logistic多因素分析影响因素。以P < 0.05为差异有统计学意义。
2 结果 2.1 危险分层四组比较基线资料分析显示组间在性别、年龄、心率方面差异无统计学意义(均P > 0.05),呼吸频次差异有统计学意义(P < 0.05),高/中高危组呼吸次数比低危/中低危组明显增加,而高危组与其他三组在收缩压、舒张压方面差异有统计学意义(P < 0.05)。四组APE患者血常规、凝血、血气参数比较见表 1。组间WBC、N、NLR水平差异有统计学意义(P < 0.05),但PLT、MPV、PDW、PLT/MPV和PLT/PDW以及出凝血相关参数PT、FIB、APTT、D-D组间差异无统计学意义(P > 0.05);血气分析参数组间比较,高危组与其他三组间pH、氧分压、饱和度均差异有统计学意义(P < 0.05),其他三组之间差异无统计学意义。
指标 | 低危组(n=62) | 中低危组(n=46) | 中高危组(n=51) | 高危组(n=23) | 统计值 | P值 |
WBC(×109/L) a | 9.13±3.12 | 8.67±3.37 | 11.18±3.73 d | 13.65±4.65 c | 4.221 | 0.037 |
N(×109) a | 6.61±2.56 | 6.25±3.02 | 9.59±4.61 d | 10.62±4.78 c | 4.612 | 0.013 |
L(×109) a | 1.75±0.75 | 1.58±0.64 | 1.38±0.69 | 1.98±0.98 | 2.087 | 0.107 |
NLRa | 4.39±0.99 | 4.37±2.01 | 8.53±5.44 d | 10.99±6.87 c | 7.165 | 0.002 |
Hb(g/L) a | 137.2±22.4 | 134.5±21.3 | 138.4±24.4 | 128.9±24.5 | 0.476 | 0.700 |
PLT(×109) a | 213.3±74.3 | 201.7±50.4 | 185.2±65.3 | 193.7±52.8 | 0.856 | 0.467 |
MPV(fL) a | 10.0±1.04 | 9.9±0.83 | 10.3±0.86 | 11.0±1.12 c | 4.332 | 0.009 |
PDW(fL) a | 11.9±2.3 | 11.7±1.8 | 12.1±1.7 | 14.2±2.8 c | 4.359 | 0.017 |
PLT/MPV a | 21.4±7.7 | 20.5±5.8 | 18.1±6.4 | 17.9±8.0 | 1.529 | 0.212 |
PLT/PDW a | 18.8±8.8 | 17.4±5.1 | 15.7±6.0 | 14.3±6.9 | 1.584 | 0.199 |
PT(s) a | 11.8±1.2 | 11.9±1.6 | 12.7±2.7 | 13.7±3.6 | 2.712 | 0.050 |
APTT(s) a | 32.1±4.6 | 30.1±4.3 | 32.1±7.9 | 32.2±12.3 | 0.539 | 0.657 |
FIB(mg/dL) a | 397.8±64.3 | 355.4±25.6 | 368.2±88.3 | 291.1±75.4 | 1.400 | 0.248 |
D-D(ng/mL) b | 1 846(957, 2 893) | 2 404(1 090, 3 276) | 2 420(1 314, 4 298) | 2 309(1 140, 5 169) | 1.040 | 0.792 |
pHa | 7.45±0.03 | 7.45±0.04 | 7.44±0.07 | 7.35±0.18 e | 4.566 | 0.012 |
PCO2(mmHg) a | 33.3±5.82 | 33.2±5.55 | 31.5±8.11 | 33.7±7.58 | 0.448 | 0.719 |
PO2(mmHg) a | 69.5±21.3 | 75.2±24.7 | 68.9±27.6 | 53.1±19.3 e | 1.913 | 0.039 |
SO2(%)a | 91.7±9.9 | 94.0±3.6 | 89.3±17.5 | 82.4±16.1 e | 2.368 | 0.033 |
注:a为(x±s);b为M(Q1, Q3);c为高危组与中低危组/低位组比较WBC、N、NLR、MPV、PDW,差异有统计学意义(P < 0.05);d为中高危组与中低危组/低位组比较WBC、N、NLR,差异有统计学意义(P < 0.05);e为高危组与其他三组PH、PO2、SO2比较,差异有统计学意义(P < 0.05),但是其他三组间互相比较,差异均无统计学意义(P > 0.05) |
为明确APE预后的危险因素,存活组与死亡组比较,并将组间单因素分析差异具有统计学意义的变量进行多因素逻辑回归分析,包括WBC、NLR、RR、pH、SO2、MPV、PDW,结果表明NLR(OR=1.179,95%CI: 1.029~1.410,P=0.039)与PH(OR=1.156,95%CI: 1.031~1.522,P=0.041)是死亡的独立预测因素,见表 2、表 3。
指标 | 存活组(n=155) | 死亡组(n=27) | F值 | P值 |
WBC(×109) a | 8.24±3.17 | 13.85±5.16 | 4.170 | 0.011 |
N(×109) a | 7.21±2.56 | 10.60±4.27 | 4.500 | 0.007 |
L(×109) a | 1.67±0.77 | 1.58±0.88 | 2.167 | 0.115 |
NLRa | 4.79±4.09 | 10.90±9.78 | 7.368 | 0.002 |
Hb(g/L) a | 137.8±27.3 | 126.6±28.4 | 0.486 | 0.711 |
PLT(×109) a | 280.9±66.8 | 188.6±65.3 | 0.835 | 0.475 |
MPV(fL) a | 10.8±1.13 | 11.8±1.02 | 4.281 | 0.013 |
PDW(fL) a | 10.8±2.5 | 13.2±2.3 | 4.218 | 0.008 |
PLT/MPVa | 21.1±7.3 | 16.9±8.2 | 1.532 | 0.231 |
PLT/PDWa | 17.8±8.5 | 13.3±6.7 | 1.511 | 0.177 |
PT(S) a | 10.8±1.3 | 15.7±4.8 | 2.872 | 0.052 |
APTT(S) a | 33.1±5.96 | 38.2±17.6 | 0.583 | 0.689 |
FIB(mg/dL) a | 391.2±86.3 | 228.7±66.9 | 1.423 | 0.284 |
D-D(ng/mL) b | 1 567(935, 2 396) | 2 989(1 641, 7 562) | 1.340 | 0.722 |
PHa | 7.41±0.04 | 7.23±0.19 | 4.361 | 0.008 |
PCO2(mmHg) a | 41.3±6.22 | 30.5±7.86 | 0.458 | 0.751 |
PO2(mmHg) a | 73.5±20.4 | 49.1±22.3 | 1.917 | 0.038 |
SO2(%)a | 91.7±9.2 | 78.4±17.3 | 2.244 | 0.032 |
注:a为(x±s);b为M(Q1,Q3) |
因素 | 回归系数(β) | 标准误(SE) | Wald χ2 | P值 | OR值 | 95%CI |
RR | 0.061 | 0.046 | 1.841 | 0.168 | 1.089 | 0.964~1.181 |
SO2 | -0.022 | 0.038 | 0.393 | 0.620 | 0.990 | 0.089~1.056 |
WBC | 0.066 | 0.079 | 0.486 | 0.577 | 1.085 | 0.933~1.313 |
NLR | 0.181 | 0.080 | 4.521 | 0.039 | 1.179 | 1.029~1.410 |
pH | 0.236 | 0.089 | 4.037 | 0.041 | 1.156 | 1.031~1.522 |
MPV | 0.079 | 0.087 | 0.576 | 0.586 | 1.063 | 0.891~1.426 |
PDW | 0.087 | 0.074 | 1.664 | 0.156 | 1.039 | 0.886~1.217 |
利用受试者工作特征曲线(ROC)综合分析NLR对于APE预后的评价价值。利用约登指数分析最佳截断值NLR数值,评价其对应的预测APE预后的敏感度及特异度。结果中UC为0.824,95%CI: 0.829~0.913;截断值为8.38,对应敏感度为0.831,特异度为0.887,P < 0.05,见图 1。
![]() |
图 1 NLR对APE预后的预测价值 Fig 1 The predictive value of NLR for the prognosis of APE |
|
PE是常见的心血管疾病,临床表现多种多样,从无症状到右心衰竭,心源性休克和(或)死亡。PE的危险分层,指标包括血压,RVD影像学表现,以及心脏生物标志物如肌钙蛋白、利钠肽,其中血压和心脏生物标记物在临床便于获得,但是,RVD的影像学资料如心脏超声、心肺CT造影,有时需要一定的时间,而且不是所有的患者都能够及时完成,因此在疑诊PE的患者中,找到一项便捷快速的初步评判指标非常重要。一旦考虑诊断PE,高危组由于血流动力学不稳定,血压下降易于鉴别,最应引起关注的是中高危组,具有潜在风险转化为高危组,需要与低危/中低危组鉴别开来。Ates等[2]发现高危组PE患者与低危组比较,N和PLT显著升高,而L显著下降,NLR和血小板与淋巴细胞比值(PLR)明显升高。本研究探讨了NLR以及血小板参数在PE危险分层以及预后中的价值,以助于识别中高危、高危及预后不良患者并及时采取措施以预防不良后果。
3.1 炎性反应在APE中的意义研究发现,白细胞增多与VTE有关[3-4],APE时发生白细胞聚集浸润,通过破坏内皮细胞从而导致静脉血栓形成[5-6]。此外,Venetz等[7]证实WBC计数升高的APE患者30 d病死率明显更高。癌症患者中WBC水平升高与静脉血栓栓塞和死亡风险增加有关[8-9]。死亡患者WBC和中性粒细胞明显增多,淋巴细胞显著降低[2, 10-12]。白细胞增多(WBC > 11×109/L)是APE病死率的独立预测因子[13],WBC不仅会促进局部血栓形成,而且与纤维蛋白原、Ⅶ因子和Ⅷ因子的水平升高有关[14]。本研究发现低危、中低危组分别与高危、中高危组比较,WBC差异均具有统计学差异,中高危组WBC均值超出正常范围,高危组WBC均值达到13.65×109/L。
肺动脉阻塞引起的严重缺氧可能会导致炎性细胞因子的释放[15]。内皮损伤产生炎性细胞因子,如IL-6,IL-8,P-选择素,单核细胞趋化蛋白1,肿瘤坏死因子α,加重炎症反应[16]。Marchena等[17]发现IL-6水平与APE患者的病死率相关。炎性介质可以直接激活接触系统并启动外源性凝血途径[18-20]。Kaya等[21]发现在APE中可溶性CD40配体升高,CD40配体是血管血栓形成和炎症的重要标志。与炎症反应和内皮功能障碍相关的DVT导致C反应蛋白水平升高[11, 22-23]。以上发现提示炎症和内皮损伤在APE的发病机制中起着重要作用[21, 24],炎症过程可以刺激中性粒细胞的产生,并加速淋巴细胞的凋亡[25]。本研究发现低危、中低危组分别与高位、中高危组比较,N均具有统计学差异,而L仅在低危与高危组之间具有差异。
NLR是全身炎症反应以及中性粒细胞和淋巴细胞之间平衡的综合表现[26-27]。NLR升高是由于中性粒细胞增加和(或)淋巴细胞减少所致。淋巴细胞下降可能是由于压力引起的血清皮质醇水平升高和对APE引起的炎症反应所致的淋巴细胞凋亡增加所致[25, 28]。研究表明NLR升高与多种疾病的院内死亡率的增加相关,包括心脑血管疾病、肿瘤、肺部疾病以及肾脏疾病等[12]。文献报道NLR对住院死亡率有很好的预测价值[29]。Meta分析表明,高水平NLR的PE患者,短期死亡风险增加了近9倍,总死亡率增加了约10倍[30]。NLR的界值为9.2,OR=3.60(95%CI: 1.44~9.18,P=0.006)[11]。Celik等[31]研究发现APE组中NLR,PLR和PDW的水平高于对照组。NLR升高表明炎症水平更高,与疾病的严重性和不良事件风险增加相关,NLR和PLR升高与APE的全因病死率相关[25, 32]。本研究发现低危、中低危组分别与高危、中高危组比较,NLR差异均具有统计学意义,各组NLR依次递增。本研究采用ROC曲线分析NLR对于院内死亡的预测价值(见图 1),AUC为0.824,95%CI: 0.829~0.913;截断值为8.38,敏感度为0.831,特异度为0.887。
动物研究发现在右室功能障碍(RVD)早期中性粒细胞升高,右室中性粒细胞浸润可能是严重右室功能障碍的原因[33]。此外,RVD者NLR、PLR显着升高,NLR是RVD的独立危险因素[34]。PE后RV的免疫组织学分析显示RV心肌中性粒细胞在6~18 h之间增加,并在第4天到1周左右逐渐消失,表明炎症与血栓的动态演变过程[29, 33]。
3.2 血小板相关参数血小板在炎症反应和血栓形成中起着关键作用,血小板活化可能与炎症有关[35-37]。研究表明,血小板升高与促炎分子和急性期反应物密切相关,如IL-1、IL-6,TNF-α和高敏C反应蛋白[38],血小板增加可以促进炎症反应和血栓反应[39],与血小板相反,淋巴细胞则可抵抗该过程以控制和抑制炎症过程,淋巴细胞越低,心血管疾病预后越差[40],文献报道高危组PE患者血小板增加[35, 41]。在DVT和APE患者中,发现MPV与APE具有相关性[42-43],研究认为MPV和PDW与PE的严重程度有关[44],在危险分层和预后分析中,MPV及PDW差异具有统计学意义[10, 45]。MPV被认为是血小板活化指标,MPV升高提示PLT形态或功能发生改变,在APE中具有很好的预后价值[46-47]。当然也存在不同结论的研究,本研究也没有发现PLT及MPV、PDW在危险分层组间差异有统计学意义,仅在低危组、中低危组与高危组之间发现MPV、PDW差异有统计学意义,似乎可以区分高危组,但对中高危组没有鉴别价值。在预后分组单因素分析,虽然MPV、PDW差异有统计学意义,但是,在多因素分析时却不再差异有统计学意义。
综上所述,APE病情危重,一旦疑诊,需要尽早区分危险分层,鉴别出可能的中高危组及高危组,并判断预后不良的患者,NRL是一项便捷快速的初步评判指标,可以在早期完善影像学检查之前提供危险分层的依据,指导早期可能的危险分层,从而给予患者恰当的监护治疗。本研究存在一定的局限性,为单中心回顾性研究,数据资料时间点不完全可控,样本数偏少,进行危险分层分组之后更显不足,有待于扩展多中心大样本数深入研究讨论。
利益冲突 所有作者声明无利益冲突
作者贡献声明 李旭亮,刘元生:研究方案设计,论文撰写、论文修改;刘艳,赵永旺:实施研究过程,资料搜集整理,进行统计学分析;石茂静,高伟波:提出研究思路
[1] | Konstantinides SV, Meyer G, Becattini C, et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS): the Task Force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC)[J]. Eur Respir J, 2019, 54(3): 1901647. DOI:10.1183/13993003.01647-2019 |
[2] | Ates H, Ates I, Kundi HR, et al. Diagnostic validity of hematologic parameters in evaluation of massive pulmonary embolism[J]. J Clin Lab Anal, 2017, 31(5): e22072. DOI:10.1002/jcla.22072 |
[3] | Khorana AA, Kuderer NM, Culakova E, et al. Development and validation of a predictive model for chemotherapy-associated thrombosis[J]. Blood, 2008, 111(10): 4902-4907. DOI:10.1182/blood-2007-10-116327 |
[4] | Connolly GC, Khorana AA, Kuderer NM, et al. Leukocytosis, thrombosis and early mortality in cancer patients initiating chemotherapy[J]. Thromb Res, 2010, 126(2): 113-118. DOI:10.1016/j.thromres.2010.05.012 |
[5] | Cavuş UY, Yildirim S, Sönmez E, et al. Prognostic value of neutrophil/lymphocyte ratio in patients with pulmonary embolism[J]. Turk J Med Sci, 2014, 44(1): 50-55. |
[6] | Watts JA, Zagorski J, Gellar MA, et al. Cardiac inflammation contributes to right ventricular dysfunction following experimental pulmonary embolism in rats[J]. J Mol Cell Cardiol, 2006, 41(2): 296-307. DOI:10.1016/j.yjmcc.2006.05.011 |
[7] | Venetz C, Labarère J, Jiménez D, et al. White blood cell count and mortality in patients with acute pulmonary embolism[J]. Am J Hematol, 2013, 88(8): 677-681. DOI:10.1002/ajh.23484 |
[8] | Trujillo-Santos J, Di Micco P, Iannuzzo M, et al. Elevated white blood cell count and outcome in cancer patients with venous thromboembolism.Findings from the RIETE Registry[J]. Thromb Haemost, 2008, 100(5): 905-911. DOI:10.1160/TH08-05-0339 |
[9] | Garcia-arias A, Cetina L, Candelaria M, et al. The prognostic significance of leukocytosis in cervical cancer[J]. Int J Gynecol Cancer, 2007, 17(2): 465-470. DOI:10.1111/j.1525-1438.2007.00816.x |
[10] | Ertem AG, Yayla C, Acar B, et al. Relation between lymphocyte to monocyte ratio and short-term mortality in patients with acute pulmonary embolism[J]. Clin Respir J, 2018, 12(2): 580-586. DOI:10.1111/crj.12565 |
[11] | Mehmet, Kayrak, M D, et al. Prognostic value of neutrophil to lymphocyte ratio in patients with acute pulmonary embolism: a restrospective study[J]. Heart Lung Circ, 2014, 23(1): 56-62. DOI:10.1016/j.hlc.2013.06.004 |
[12] | Liu C, Zhan HL, Huang ZH, et al. Prognostic role of the preoperative neutrophil-to-lymphocyte ratio and albumin for 30-day mortality in patients with postoperative acute pulmonary embolism[J]. BMC Pulm Med, 2020, 20(1): 1-8. DOI:10.1186/s12890-020-01216-5 |
[13] | Huang CM, Lin YC, Lin YJ, et al. Risk stratification and clinical outcomes in patients with acute pulmonary embolism[J]. Clin Biochem, 2011, 44(13): 1110-1115. DOI:10.1016/j.clinbiochem.2011.06.077 |
[14] | Bovill EG, Bild DE, Heiss G, et al. White blood cell counts in persons aged 65 years or more from the Cardiovascular Health Study.Correlations with baseline clinical and demographic characteristics[J]. Am J Epidemiol, 1996, 143(11): 1107-1115. DOI:10.1093/oxfordjournals.aje.a008687 |
[15] | A li, Zorlu, M D, et al. Usefulness of admission red cell distribution width as a predictor of early mortality in patients with acute pulmonary embolism[J]. Am J Cardiol, 2012, 109(1): 128-134. DOI:10.1016/j.amjcard.2011.08.015 |
[16] | Mühl D, Füredi R, Cristofari J, et al. Evaluation of oxidative stress in the thrombolysis of pulmonary embolism[J]. J Thromb Thrombolysis, 2006, 22(3): 221-228. DOI:10.1007/s11239-006-9035-2 |
[17] | Marchena Yglesias PJ, Nieto Rodríguez JA, Serrano Martínez S, et al. Acute-phase reactants and markers of inflammation in venous thromboembolic disease: correlation with clinical and evolution parameters[J]. An Med Interna, 2006, 23(3): 105-110. DOI:10.4321/s0212-71992006000300002 |
[18] | Long AT, Kenne E, Jung R, et al. Contact system revisited: an interface between inflammation, coagulation, and innate immunity[J]. J Thromb Haemost, 2016, 14(3): 427-437. DOI:10.1111/jth.13235 |
[19] | van Montfoort ML, Meijers JCM. Recent insights into the role of the contact pathway in thrombo-inflammatory disorders[J]. Hematology Am Soc Hematol Educ Program, 2014, 2014(1): 60-65. DOI:10.1182/asheducation-2014.1.60 |
[20] | Wu Y. Contact pathway of coagulation and inflammation[J]. Thromb J, 2015, 13: 17. DOI:10.1186/s12959-015-0048-y |
[21] | Kaya Z, Ozdemir K, Kayrak M, et al. Soluble CD40 ligand levels in acute pulmonary embolism: a prospective, randomized, controlled study[J]. Heart Vessels, 2012, 27(3): 295-299. DOI:10.1007/s00380-011-0142-4 |
[22] | Jezovnik MK, Poredos P. Idiopathic venous thrombosis is related to systemic inflammatory response and to increased levels of circulating markers of endothelial dysfunction[J]. Int Angiol, 2010, 29(3): 226-231. |
[23] | Bucek RA, Reiter M, Quehenberger P, et al. C-reactive protein in the diagnosis of deep vein thrombosis[J]. Br J Haematol, 2002, 119(2): 385-389. DOI:10.1046/j.1365-2141.2002.03886.x |
[24] | D r, Samuel Z, Goldhaber, et al. Acute pulmonary embolism: clinical outcomes in the International Cooperative Pulmonary Embolism Registry (ICOPER)[J]. Lancet, 1999, 353(9162): 1386-1389. DOI:10.1016/S0140-6736(98)07534-5 |
[25] | Ma Y, Mao Y, He X, et al. The values of neutrophil to lymphocyte ratio and platelet to lymphocyte ratio in predicting 30 day mortality in patients with acute pulmonary embolism[J]. BMC Cardiovasc Disord, 2016, 16: 123. DOI:10.1186/s12872-016-0304-5 |
[26] | Zahorec R. Ratio of neutrophil to lymphocyte counts: rapid and simple parameter of systemic inflammation and stress in critically ill[J]. Bratisl Lek Listy, 2001, 102(1): 5-14. |
[27] | Ghaffari S, Nadiri M, Pourafkari L, et al. The predictive value of total neutrophil count and neutrophil/lymphocyte ratio in predicting In-hospital mortality and complications after STEMI[J]. J Cardiovasc Thorac Res, 2014, 6(1): 35-41. DOI:10.5681/jcvtr.2014.007 |
[28] | Acanfora D, Gheorghiade M, Trojano L, et al. Relative lymphocyte count: a prognostic indicator of mortality in elderly patients with congestive heart failure[J]. Am Heart J, 2001, 142(1): 167-173. DOI:10.1067/mhj.2001.115792 |
[29] | Phan T, Brailovsky Y, Fareed J, et al. Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios predict all-cause mortality in acute pulmonary embolism[J]. Clin Appl Thromb Hemost, 2020, 26: 107602961990054. DOI:10.1177/1076029619900549 |
[30] | Wang Q, Ma J, Jiang Z, et al. Prognostic value of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in acute pulmonary embolism: a systematic review and meta-analysis[J]. Int Angiol, 2018, 37(1): 4-11. DOI:10.23736/s0392-9590.17.03848-2 |
[31] | Celik A, Ozcan IT, Gündes A, et al. Usefulness of admission hematologic parameters as diagnostic tools in acute pulmonary embolism[J]. Kaohsiung J Med Sci, 2015, 31(3): 145-149. DOI:10.1016/j.kjms.2014.12.004 |
[32] | Karataş MB, İpek G, Onuk T, et al. Assessment of prognostic value of neutrophil to lymphocyte ratio and platelet to lymphocyte ratio in patients with pulmonary embolism[J]. Acta Cardiol Sin, 2016, 32(3): 313-320. DOI:10.6515/acs20151013a |
[33] | Watts JA, Gellar MA, Obraztsova M, et al. Role of inflammation in right ventricular damage and repair following experimental pulmonary embolism in rats[J]. Int J Exp Pathol, 2008, 89(5): 389-399. DOI:10.1111/j.1365-2613.2008.00610.x |
[34] | Jia D, Liu F, Zhang Q, et al. Rapid on-site evaluation of routine biochemical parameters to predict right ventricular dysfunction in and the prognosis of patients with acute pulmonary embolism upon admission to the emergency room[J]. J Clin Lab Anal, 2018, 32(4): e22362. DOI:10.1002/jcla.22362 |
[35] | Balta S, Demırkol S, Kucuk U. The platelet lymphocyte ratio may be useful inflammatory indicator in clinical practice[J]. Hemodial Int, 2013, 17(4): 668-669. DOI:10.1111/hdi.12058 |
[36] | Yang W, Liu Y. Platelet-lymphocyte ratio is a predictor of venous thromboembolism in cancer patients[J]. Thromb Res, 2015, 136(2): 212-215. DOI:10.1016/j.thromres.2014.11.025 |
[37] | Ferroni P, Riondino S, Formica V, et al. Venous thromboembolism risk prediction in ambulatory cancer patients: clinical significance of neutrophil/lymphocyte ratio and platelet/lymphocyte ratio[J]. Int J Cancer, 2015, 136(5): 1234-1240. DOI:10.1002/ijc.29076 |
[38] | Alexandrakis MG, Passam FH, Moschandrea IA, et al. Levels of serum cytokines and acute phase proteins in patients with essential and cancer-related thrombocytosis[J]. Am J Clin Oncol, 2003, 26(2): 135-140. DOI:10.1097/00000421-200304000-00007 |
[39] | Balta S, Ozturk C. The platelet-lymphocyte ratio: a simple, inexpensive and rapid prognostic marker for cardiovascular events[J]. Platelets, 2015, 26(7): 680-681. DOI:10.3109/09537104.2014.979340 |
[40] | Zouridakis EG, Garcia-Moll X, Kaski JC. Usefulness of the blood lymphocyte count in predicting recurrent instability and death in patients with unstable angina pectoris[J]. Am J Cardiol, 2000, 86(4): 449-451. DOI:10.1016/s0002-9149(00)00963-2 |
[41] | Telo S, Kuluöztürk M, Deveci F, et al. The relationship between platelet-to-lymphocyte ratio and pulmonary embolism severity in acute pulmonary embolism[J]. Int Angiol, 2019, 38(1): 4-9. DOI:10.23736/s0392-9590.18.04028-2 |
[42] | Atilla, Ic li, M D, et al. Relationship between mean platelet volume and pulmonary embolism in patients with deep vein thrombosis[J]. Heart Lung Circ, 2015, 24(11): 1081-1086. DOI:10.1016/j.hlc.2015.04.170 |
[43] | Talay F, Ocak T, Alcelik A, et al. A new diagnostic marker for acute pulmonary embolism in emergency department: mean platelet volume[J]. Afr Health Sci, 2014, 14(1): 94-99. DOI:10.4314/ahs.v14i1.15 |
[44] | Günay E, Sarinc Ulasli S, Kacar E, et al. Can platelet indices predict obstruction level of pulmonary vascular bed in patients with acute pulmonary embolism?[J]. Clin Respir J, 2014, 8(1): 33-40. DOI:10.1111/crj.12031 |
[45] | Çağdaş, Akgüllü, M D, et al. Predictors of early death in patients with acute pulmonary embolism[J]. Am J Emerg Med, 2015, 33(2): 214-221. DOI:10.1016/j.ajem.2014.11.022 |
[46] | Kostrubiec M, Łabyk A, Pedowska-Włoszek J, et al. Mean platelet volume predicts early death in acute pulmonary embolism[J]. Heart, 2010, 96(6): 460-465. DOI:10.1136/hrt.2009.180489 |
[47] | Hilal E, Neslihan Y, Gazi G, et al. Does the mean platelet volume have any importance in patients with acute pulmonary embolism?[J]. Wien Klin Wochenschr, 2013, 125(13): 381-385. DOI:10.1007/s00508-013-0380-9 |